Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2015, Volume 55, Number 3, Pages 435–445
DOI: https://doi.org/10.7868/S004446691503014X
(Mi zvmmf10171)
 

This article is cited in 18 scientific papers (total in 18 papers)

Numerical analysis of soliton solutions of the modified Korteweg–de Vries–sine-Gordon equation

S. P. Popov

Dorodnicyn Computing Center, Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333, Russia
References:
Abstract: Multisoliton solutions of the modified Korteweg–de Vries–sine-Gordon equation (mKdV-SG) are found numerically by applying the quasi-spectral Fourier method and the fourth-order Runge–Kutta method. The accuracy and features of the approach are determined as applied to problems with initial data in the form of various combinations of perturbed soliton distributions. Three-soliton solutions are obtained, and the generation of kinks, breathers, wobblers, perturbed kinks, and nonlinear oscillatory waves is studied.
Key words: mKdV equation, SG equation, mKdV-SG equation, SGmKdV equation, SPE equation, kink, antikink, breather, wobbler, soliton, multisoliton interaction.
Received: 15.05.2014
Revised: 15.10.2014
English version:
Computational Mathematics and Mathematical Physics, 2015, Volume 55, Issue 3, Pages 437–446
DOI: https://doi.org/10.1134/S0965542515030136
Bibliographic databases:
Document Type: Article
UDC: 519.634
MSC: 65M70
Language: Russian
Citation: S. P. Popov, “Numerical analysis of soliton solutions of the modified Korteweg–de Vries–sine-Gordon equation”, Zh. Vychisl. Mat. Mat. Fiz., 55:3 (2015), 435–445; Comput. Math. Math. Phys., 55:3 (2015), 437–446
Citation in format AMSBIB
\Bibitem{Pop15}
\by S.~P.~Popov
\paper Numerical analysis of soliton solutions of the modified Korteweg--de Vries--sine-Gordon equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2015
\vol 55
\issue 3
\pages 435--445
\mathnet{http://mi.mathnet.ru/zvmmf10171}
\crossref{https://doi.org/10.7868/S004446691503014X}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3334443}
\zmath{https://zbmath.org/?q=an:06458220}
\elib{https://elibrary.ru/item.asp?id=22995535}
\transl
\jour Comput. Math. Math. Phys.
\yr 2015
\vol 55
\issue 3
\pages 437--446
\crossref{https://doi.org/10.1134/S0965542515030136}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000352701800008}
\elib{https://elibrary.ru/item.asp?id=24023930}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928155853}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10171
  • https://www.mathnet.ru/eng/zvmmf/v55/i3/p435
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:317
    Full-text PDF :120
    References:65
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024