Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2015, Volume 55, Number 3, Pages 429–434
DOI: https://doi.org/10.7868/S0044466915030151
(Mi zvmmf10170)
 

This article is cited in 2 scientific papers (total in 2 papers)

Leader in a diffusion competition model

V. N. Razzhevaikin

Dorodnicyn Computing Center, Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333, Russia
Full-text PDF (180 kB) Citations (2)
References:
Abstract: A one-dimensional Cauchy problem is considered for a system of reaction-diffusion equations that, in the point version, generalizes the Volterra competition model. It is proved that the number of the leader in the propagation velocity of nonvanishing solution values at the periphery is independent of nonnegative finite initial distributions.
Key words: competition model, reaction-diffusion system, propagation velocity.
Received: 23.09.2014
English version:
Computational Mathematics and Mathematical Physics, 2015, Volume 55, Issue 3, Pages 432–436
DOI: https://doi.org/10.1134/S0965542515030148
Bibliographic databases:
Document Type: Article
UDC: 519.62
MSC: Primary 92D25; Secondary 35K45, 35K57
Language: Russian
Citation: V. N. Razzhevaikin, “Leader in a diffusion competition model”, Zh. Vychisl. Mat. Mat. Fiz., 55:3 (2015), 429–434; Comput. Math. Math. Phys., 55:3 (2015), 432–436
Citation in format AMSBIB
\Bibitem{Raz15}
\by V.~N.~Razzhevaikin
\paper Leader in a diffusion competition model
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2015
\vol 55
\issue 3
\pages 429--434
\mathnet{http://mi.mathnet.ru/zvmmf10170}
\crossref{https://doi.org/10.7868/S0044466915030151}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3334442}
\zmath{https://zbmath.org/?q=an:06458219}
\elib{https://elibrary.ru/item.asp?id=22995533}
\transl
\jour Comput. Math. Math. Phys.
\yr 2015
\vol 55
\issue 3
\pages 432--436
\crossref{https://doi.org/10.1134/S0965542515030148}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000352701800007}
\elib{https://elibrary.ru/item.asp?id=24023616}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928101961}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10170
  • https://www.mathnet.ru/eng/zvmmf/v55/i3/p429
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:179
    Full-text PDF :57
    References:40
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024