Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2015, Volume 55, Number 3, Pages 355–371
DOI: https://doi.org/10.7868/S0044466915030060
(Mi zvmmf10164)
 

This article is cited in 9 scientific papers (total in 9 papers)

On efficient randomized algorithms for finding the PageRank vector

A. V. Gasnikovab, D. Yu. Dmitrievba

a Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141700, Russia
b Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoi Karetnyi per. 19, str. 1, Moscow, 127051, Russia
Full-text PDF (300 kB) Citations (9)
References:
Abstract: Two randomized methods are considered for finding the PageRank vector; in other words, the solution of the system $\mathbf{p}^{\mathrm{T}}=\mathbf{p}^{\mathrm{T}}P$ with a stochastic $n\times n$ matrix $P$, where $n\sim 10^7$$10^9$, is sought (in the class of probability distributions) with accuracy $\varepsilon:\varepsilon\gg n^{-1}$. Thus, the possibility of brute-force multiplication of $P$ by the column is ruled out in the case of dense objects. The first method is based on the idea of Markov chain Monte Carlo algorithms. This approach is efficient when the iterative process $\mathbf{p}_{t+1}^{\mathrm{T}}=\mathbf{p}_t^{\mathrm{T}}P$ quickly reaches a steady state. Additionally, it takes into account another specific feature of $P$, namely, the nonzero off-diagonal elements of $P$ are equal in rows (this property is used to organize a random walk over the graph with the matrix $P$). Based on modern concentration-of-measure inequalities, new bounds for the running time of this method are presented that take into account the specific features of $P$. In the second method, the search for a ranking vector is reduced to finding the equilibrium in the antagonistic matrix game
$$ \min_{\mathbf{p}\in S_n(1)}\max_{\mathbf{u}\in S_n(1)}\langle \mathbf{u}, (P^{\mathrm{T}}-I)\mathbf{p}\rangle, $$
where $S_n(1)$ is a unit simplex in $\mathbb{R}^n$ and $I$ is the identity matrix. The arising problem is solved by applying a slightly modified Grigoriadis–Khachiyan algorithm (1995). This technique, like the Nazin–Polyak method (2009), is a randomized version of Nemirovski’s mirror descent method. The difference is that randomization in the Grigoriadis–Khachiyan algorithm is used when the gradient is projected onto the simplex rather than when the stochastic gradient is computed. For sparse matrices $P$, the method proposed yields noticeably better results.
Key words: mirror descent method, Markov chain Monte Carlo, stochastic optimization, randomization, PageRank.
Received: 03.09.2014
English version:
Computational Mathematics and Mathematical Physics, 2015, Volume 55, Issue 3, Pages 349–365
DOI: https://doi.org/10.1134/S0965542515030069
Bibliographic databases:
Document Type: Article
UDC: 519.62
MSC: Primary 68W20; Secondary 90C15, 90C47, 90C90
Language: Russian
Citation: A. V. Gasnikov, D. Yu. Dmitriev, “On efficient randomized algorithms for finding the PageRank vector”, Zh. Vychisl. Mat. Mat. Fiz., 55:3 (2015), 355–371; Comput. Math. Math. Phys., 55:3 (2015), 349–365
Citation in format AMSBIB
\Bibitem{GasDmi15}
\by A.~V.~Gasnikov, D.~Yu.~Dmitriev
\paper On efficient randomized algorithms for finding the PageRank vector
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2015
\vol 55
\issue 3
\pages 355--371
\mathnet{http://mi.mathnet.ru/zvmmf10164}
\crossref{https://doi.org/10.7868/S0044466915030060}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3334436}
\zmath{https://zbmath.org/?q=an:06458213}
\elib{https://elibrary.ru/item.asp?id=22995522}
\transl
\jour Comput. Math. Math. Phys.
\yr 2015
\vol 55
\issue 3
\pages 349--365
\crossref{https://doi.org/10.1134/S0965542515030069}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000352701800001}
\elib{https://elibrary.ru/item.asp?id=24024017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928170216}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10164
  • https://www.mathnet.ru/eng/zvmmf/v55/i3/p355
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024