Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2015, Volume 55, Number 1, Pages 145–152
DOI: https://doi.org/10.7868/S0044466915010135
(Mi zvmmf10142)
 

This article is cited in 5 scientific papers (total in 5 papers)

Parallel algorithm for computing points on a computation front hyperplane

M. M. Krasnov

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047, Russia
Full-text PDF (252 kB) Citations (5)
References:
Abstract: A parallel algorithm for computing points on a computation front hyperplane is described. This task arises in the computation of a quantity defined on a multidimensional rectangular domain. Three-dimensional domains are usually discussed, but the material is given in the general form when the number of measurements is at least two. When the values of a quantity at different points are internally independent (which is frequently the case), the corresponding computations are independent as well and can be performed in parallel. However, if there are internal dependences (as, for example, in the Gauss–Seidel method for systems of linear equations), then the order of scanning points of the domain is an important issue. A conventional approach in this case is to form a computation front hyperplane (a usual plane in the three-dimensional case and a line in the two-dimensional case) that moves linearly across the domain at a certain angle. At every step in the course of motion of this hyperplane, its intersection points with the domain can be treated independently and, hence, in parallel, but the steps themselves are executed sequentially. At different steps, the intersection of the hyperplane with the entire domain can have a rather complex geometry and the search for all points of the domain lying on the hyperplane at a given step is a nontrivial problem. This problem (i.e., the computation of the coordinates of points lying in the intersection of the domain with the hyperplane at a given step in the course of hyperplane motion) is addressed below. The computations over the points of the hyperplane can be executed in parallel.
Key words: computation front, hyperplane, Norma language, CUDA.
Received: 18.03.2014
English version:
Computational Mathematics and Mathematical Physics, 2015, Volume 55, Issue 1, Pages 140–147
DOI: https://doi.org/10.1134/S0965542515010133
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: Russian
Citation: M. M. Krasnov, “Parallel algorithm for computing points on a computation front hyperplane”, Zh. Vychisl. Mat. Mat. Fiz., 55:1 (2015), 145–152; Comput. Math. Math. Phys., 55:1 (2015), 140–147
Citation in format AMSBIB
\Bibitem{Kra15}
\by M.~M.~Krasnov
\paper Parallel algorithm for computing points on a computation front hyperplane
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2015
\vol 55
\issue 1
\pages 145--152
\mathnet{http://mi.mathnet.ru/zvmmf10142}
\crossref{https://doi.org/10.7868/S0044466915010135}
\elib{https://elibrary.ru/item.asp?id=22908454}
\transl
\jour Comput. Math. Math. Phys.
\yr 2015
\vol 55
\issue 1
\pages 140--147
\crossref{https://doi.org/10.1134/S0965542515010133}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000348997900013}
\elib{https://elibrary.ru/item.asp?id=23970490}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84922069315}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10142
  • https://www.mathnet.ru/eng/zvmmf/v55/i1/p145
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024