Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2015, Volume 55, Number 1, Pages 10–21
DOI: https://doi.org/10.7868/S0044466915010159
(Mi zvmmf10131)
 

This article is cited in 2 scientific papers (total in 2 papers)

Investigation and improvement of biased Monte-Carlo estimates

G. Z. Lotovaab, G. A. Mikhailovab

a Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, pr. Akademika Lavrent’eva 6, 630090, Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
Full-text PDF (271 kB) Citations (2)
References:
Abstract: The numerical statistical modeling of the free path of a particle in a collision transport model with allowance for an external force acceleration is based on time stepping. For the corresponding deterministic relative error, a new constructive estimate is obtained, which is used to choose a suitable step size. The standard statistical “local estimates” of the particle flux density are biased because the contributions made by the collisions in a “local ball” of small radius are set to zero to make the variance bounded. Practically effective estimates of the corresponding relative error are presented. Additionally, a uniform optimization of a histogram-type functional estimate of the particle distribution density is presented assuming that the corresponding statistical ensemble is Poisson distributed. It turns out that the deterministic error in optimal (in terms of time complexity) versions of the considered algorithms is close to the statistical error.
Key words: statistical modeling, free path, time step, time complexity, collision estimate, double local estimate, Poisson ensemble, histogram.
Received: 04.07.2014
English version:
Computational Mathematics and Mathematical Physics, 2015, Volume 55, Issue 1, Pages 8–18
DOI: https://doi.org/10.1134/S0965542515010157
Bibliographic databases:
Document Type: Article
UDC: 519.676
Language: Russian
Citation: G. Z. Lotova, G. A. Mikhailov, “Investigation and improvement of biased Monte-Carlo estimates”, Zh. Vychisl. Mat. Mat. Fiz., 55:1 (2015), 10–21; Comput. Math. Math. Phys., 55:1 (2015), 8–18
Citation in format AMSBIB
\Bibitem{LotMik15}
\by G.~Z.~Lotova, G.~A.~Mikhailov
\paper Investigation and improvement of biased Monte-Carlo estimates
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2015
\vol 55
\issue 1
\pages 10--21
\mathnet{http://mi.mathnet.ru/zvmmf10131}
\crossref{https://doi.org/10.7868/S0044466915010159}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3304920}
\elib{https://elibrary.ru/item.asp?id=22908443}
\transl
\jour Comput. Math. Math. Phys.
\yr 2015
\vol 55
\issue 1
\pages 8--18
\crossref{https://doi.org/10.1134/S0965542515010157}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000348997900002}
\elib{https://elibrary.ru/item.asp?id=23970374}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84922016786}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10131
  • https://www.mathnet.ru/eng/zvmmf/v55/i1/p10
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:337
    Full-text PDF :75
    References:51
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024