Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2014, Volume 54, Number 12, Pages 1904–1953
DOI: https://doi.org/10.7868/S0044466914120096
(Mi zvmmf10124)
 

This article is cited in 12 scientific papers (total in 12 papers)

Singular Riemann–Hilbert problem in complex-shaped domains

S. I. Bezrodnykhab, V. I. Vlasova

a Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333, Russia
b Sternberg Astronomical Institute, Moscow State University, Universitetskii pr. 13, Moscow, 119992, Russia
References:
Abstract: In simply connected complex-shaped domains $\mathcal{B}$ a Riemann–Hilbert problem with discontinuous data and growth condidions of a solution at some points of the boundary is considered. The desired analytic function $\mathcal{F}(z)$ is represented as the composition of a conformal mapping of $\mathcal{B}$ onto the half-plane $\mathbb{H}^+$ and the solution $\mathcal{P}^+$ of the corresponding Riemann–Hilbert problem in $\mathbb{H}^+$. Methods for finding this mapping are described, and a technique for constructing an analytic function $\mathcal{P}^+$ in $\mathbb{H}^+$ in the terms of a modified Cauchy-type integral. In the case of piecewise constant data of the problem, a fundamentally new representation of $\mathcal{P}^+$ in the form of a Christoffel–Schwarz-type integral is obtained, which solves the Riemann problem of a geometric interpretation of the solution and is more convenient for numerical implementation than the conventional representation in terms of Cauchy-type integrals.
Key words: Riemann–Hilbert problem, Cauchy-type integral, conformal mappings, Schwarz–Christoffel integral, hypergeometric functions.
Received: 10.06.2014
English version:
Computational Mathematics and Mathematical Physics, 2014, Volume 54, Issue 12, Pages 1826–1875
DOI: https://doi.org/10.1134/S0965542514120082
Bibliographic databases:
Document Type: Article
UDC: 519.642
Language: Russian
Citation: S. I. Bezrodnykh, V. I. Vlasov, “Singular Riemann–Hilbert problem in complex-shaped domains”, Zh. Vychisl. Mat. Mat. Fiz., 54:12 (2014), 1904–1953; Comput. Math. Math. Phys., 54:12 (2014), 1826–1875
Citation in format AMSBIB
\Bibitem{BezVla14}
\by S.~I.~Bezrodnykh, V.~I.~Vlasov
\paper Singular Riemann--Hilbert problem in complex-shaped domains
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2014
\vol 54
\issue 12
\pages 1904--1953
\mathnet{http://mi.mathnet.ru/zvmmf10124}
\crossref{https://doi.org/10.7868/S0044466914120096}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3291549}
\elib{https://elibrary.ru/item.asp?id=22453417}
\transl
\jour Comput. Math. Math. Phys.
\yr 2014
\vol 54
\issue 12
\pages 1826--1875
\crossref{https://doi.org/10.1134/S0965542514120082}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000346411700007}
\elib{https://elibrary.ru/item.asp?id=24022100}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919734288}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10124
  • https://www.mathnet.ru/eng/zvmmf/v54/i12/p1904
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:667
    Full-text PDF :379
    References:88
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024