Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2014, Volume 54, Number 8, Pages 1319–1331
DOI: https://doi.org/10.7868/S0044466914080109
(Mi zvmmf10078)
 

This article is cited in 18 scientific papers (total in 18 papers)

Scalar problem of plane wave diffraction by a system of nonintersecting screens and inhomogeneous bodies

M. Yu. Medvedik, Yu. G. Smirnov, A. A. Tsupak

Penza State University, ul. Krasnaya 40, Penza, 440026, Russia
References:
Abstract: The scalar problem of plane wave diffraction by a system of bodies and infinitely thin screens is considered in a quasi-classical formulation. The solution is sought in the classical sense but is defined not in the entire space $\mathbb{R}^3$ but rather everywhere except for the screen edges. The original boundary value problem for the Helmholtz equation is reduced to a system of weakly singular integral equations in the regions occupied by the bodies and on the screen surfaces. The equivalence of the integral and differential formulations is proven, and the solvability of the system in the Sobolev spaces is established. The integral equations are approximately solved by the Bubnov–Galerkin method. The convergence of the method is proved, its software implementation is described, and numerical results are presented.
Key words: scalar problem of plane wave diffraction, Helmholtz equation, method of singular integral equations in Sobolev space, Galerkin method, convergence of numerical scheme, software implementation.
Received: 24.01.2014
English version:
Computational Mathematics and Mathematical Physics, 2014, Volume 54, Issue 8, Pages 1280–1292
DOI: https://doi.org/10.1134/S0965542514080089
Bibliographic databases:
Document Type: Article
UDC: 519.634
MSC: 78A45
Language: Russian
Citation: M. Yu. Medvedik, Yu. G. Smirnov, A. A. Tsupak, “Scalar problem of plane wave diffraction by a system of nonintersecting screens and inhomogeneous bodies”, Zh. Vychisl. Mat. Mat. Fiz., 54:8 (2014), 1319–1331; Comput. Math. Math. Phys., 54:8 (2014), 1280–1292
Citation in format AMSBIB
\Bibitem{MedSmiTsu14}
\by M.~Yu.~Medvedik, Yu.~G.~Smirnov, A.~A.~Tsupak
\paper Scalar problem of plane wave diffraction by a system of nonintersecting screens and inhomogeneous bodies
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2014
\vol 54
\issue 8
\pages 1319--1331
\mathnet{http://mi.mathnet.ru/zvmmf10078}
\crossref{https://doi.org/10.7868/S0044466914080109}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3250877}
\zmath{https://zbmath.org/?q=an:06391170}
\elib{https://elibrary.ru/item.asp?id=21803840}
\transl
\jour Comput. Math. Math. Phys.
\yr 2014
\vol 54
\issue 8
\pages 1280--1292
\crossref{https://doi.org/10.1134/S0965542514080089}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000341085500008}
\elib{https://elibrary.ru/item.asp?id=23990215}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84907337368}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10078
  • https://www.mathnet.ru/eng/zvmmf/v54/i8/p1319
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:369
    Full-text PDF :142
    References:68
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024