Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2014, Volume 54, Number 8, Pages 1281–1288
DOI: https://doi.org/10.7868/S0044466914080134
(Mi zvmmf10075)
 

This article is cited in 1 scientific paper (total in 2 paper)

Two methods for direct numerical integration of the Prandtl equation and comparative analysis between them

A. V. Sahakyana, N. N. Shavlakadzeb

a Institute of Mechanics, National Academy of Sciences of Armenia, pr. Marshala Bagramyana 24b, Yerevan, 0019, Armenia
b A. Razmadze Mathematical Institute, Georgian Academy of Sciences
Full-text PDF (221 kB) Citations (2)
References:
Abstract: Two methods based on quadrature formulas are proposed for the direct numerical integration of Prandtl’s singular integro-differential equation. In the first method, Prandtl’s equation is solved directly by applying the method of mechanical quadrature and the circulation along an airfoil section is determined. In the second method, Prandtl’s equation is rewritten for the circulation derivative, which is determined by applying mechanical quadratures, and the circulation is then reconstructed using the same quadrature formulas. Both methods are analyzed numerically and are shown to converge. Their convergence rates are nearly identical, while the second method requires much more CPU time than the first one.
Key words: finite wing theory, Prandtl’s singular integro-differential equation, complex wing geometry, numerical integration, method of mechanical quadrature.
Received: 23.09.2013
Revised: 21.01.2014
English version:
Computational Mathematics and Mathematical Physics, 2014, Volume 54, Issue 8, Pages 1244–1250
DOI: https://doi.org/10.1134/S0965542514080119
Bibliographic databases:
Document Type: Article
UDC: 519.642
MSC: 76F40
Language: Russian
Citation: A. V. Sahakyan, N. N. Shavlakadze, “Two methods for direct numerical integration of the Prandtl equation and comparative analysis between them”, Zh. Vychisl. Mat. Mat. Fiz., 54:8 (2014), 1281–1288; Comput. Math. Math. Phys., 54:8 (2014), 1244–1250
Citation in format AMSBIB
\Bibitem{SahSha14}
\by A.~V.~Sahakyan, N.~N.~Shavlakadze
\paper Two methods for direct numerical integration of the Prandtl equation and comparative analysis between them
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2014
\vol 54
\issue 8
\pages 1281--1288
\mathnet{http://mi.mathnet.ru/zvmmf10075}
\crossref{https://doi.org/10.7868/S0044466914080134}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3250874}
\zmath{https://zbmath.org/?q=an:06391167}
\elib{https://elibrary.ru/item.asp?id=21803837}
\transl
\jour Comput. Math. Math. Phys.
\yr 2014
\vol 54
\issue 8
\pages 1244--1250
\crossref{https://doi.org/10.1134/S0965542514080119}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000341085500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84907362326}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10075
  • https://www.mathnet.ru/eng/zvmmf/v54/i8/p1281
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:312
    Full-text PDF :76
    References:58
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024