Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2014, Volume 54, Number 7, Pages 1203–1217
DOI: https://doi.org/10.7868/S0044466914070114
(Mi zvmmf10068)
 

This article is cited in 9 scientific papers (total in 9 papers)

Combined grid-characteristic method for the numerical solution of three-dimensional dynamical elastoplastic problems

A. V. Vasyukov, A. S. Ermakov, I. B. Petrov, A. P. Potapov, A. V. Favorskaya, A. V. Shevtsov

Moscow Institute of Physics and Technology (State University), Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141700, Russia
References:
Abstract: A combined method blending the advantages of smoothed particles hydrodynamics (SPH) and the grid-characteristic method (GCM) is proposed for simulating elastoplastic bodies. Various grid methods, including the GCM, have long been used for the numerical simulation of elastoplastic media. This method applies to the simulation of wave processes in elastic media, including elastic impacts, in which case an advantage is the use of moving tetrahedral meshes. Additionally, fracture processes can be simulated by applying various fracture criteria. However, this is a technically complicated task with the accuracy of the results degrading due to the continual updating of the grid. A more suitable approach to the simulation of processes involving substantial fractures and deformations is based on SPH, which is a meshless method. However, this method also has shortcomings: it produces spurious modes, and the simulation of oscillations requires particle refinement. Thus, two families of methods are available that are optimal as applied to two different groups of problems. However, a realworld problem can frequently be a mixed one, which requires a substantial tradeoff in the numerical methods applied. Aimed at solving such problems, a combined GCM-SPH method is developed that blends the advantages of two constituting techniques and partially eliminates their shortcomings.
Key words: grid-characteristic method, smoothed particles hydrodynamics, numerical simulation, unstructured meshes, combined method, high-performance computer systems, three-dimensional dynamical problems.
Received: 24.01.2014
English version:
Computational Mathematics and Mathematical Physics, 2014, Volume 54, Issue 7, Pages 1176–1189
DOI: https://doi.org/10.1134/S0965542514070100
Bibliographic databases:
Document Type: Article
UDC: 519.634
MSC: 74B20,65M25
Language: Russian
Citation: A. V. Vasyukov, A. S. Ermakov, I. B. Petrov, A. P. Potapov, A. V. Favorskaya, A. V. Shevtsov, “Combined grid-characteristic method for the numerical solution of three-dimensional dynamical elastoplastic problems”, Zh. Vychisl. Mat. Mat. Fiz., 54:7 (2014), 1203–1217; Comput. Math. Math. Phys., 54:7 (2014), 1176–1189
Citation in format AMSBIB
\Bibitem{VasErmPet14}
\by A.~V.~Vasyukov, A.~S.~Ermakov, I.~B.~Petrov, A.~P.~Potapov, A.~V.~Favorskaya, A.~V.~Shevtsov
\paper Combined grid-characteristic method for the numerical solution of three-dimensional dynamical elastoplastic problems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2014
\vol 54
\issue 7
\pages 1203--1217
\mathnet{http://mi.mathnet.ru/zvmmf10068}
\crossref{https://doi.org/10.7868/S0044466914070114}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3233571}
\zmath{https://zbmath.org/?q=an:06391161}
\elib{https://elibrary.ru/item.asp?id=21699142}
\transl
\jour Comput. Math. Math. Phys.
\yr 2014
\vol 54
\issue 7
\pages 1176--1189
\crossref{https://doi.org/10.1134/S0965542514070100}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000339822300009}
\elib{https://elibrary.ru/item.asp?id=23969899}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84904876598}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10068
  • https://www.mathnet.ru/eng/zvmmf/v54/i7/p1203
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:348
    Full-text PDF :99
    References:58
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024