Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2014, Volume 54, Number 6, Pages 942–952
DOI: https://doi.org/10.7868/S0044466914060131
(Mi zvmmf10047)
 

This article is cited in 6 scientific papers (total in 6 papers)

Three-level schemes of the alternating triangular method

P. N. Vabishchevichab

a Ammosov North-East Federal University, ul. Belinskogo 58, Yakutsk, 677000, Russia
b Nuclear Safety Institute, Russian Academy of Sciences, Bol'shaya Tul'skya ul. 52, Moscow, 115191, Russia
Full-text PDF (205 kB) Citations (6)
References:
Abstract: In this paper, the schemes of the alternating triangular method are set out in the class of splitting methods used for the approximate solution of Cauchy problems for evolutionary problems. These schemes are based on splitting the problem operator into two operators that are conjugate transposes of each other. Economical schemes for the numerical solution of boundary value problems for parabolic equations are designed on the basis of an explicit-implicit splitting of the problem operator. The alternating triangular method is also of interest for the construction of numerical algorithms that solve boundary value problems for systems of partial differential equations and vector systems. The conventional schemes of the alternating triangular method used for first-order evolutionary equations are two-level ones. The approximation properties of such splitting methods can be improved by transiting to three-level schemes. Their construction is based on a general principle for improving the properties of difference schemes, namely, on the regularization principle of A. A. Samarskii. The analysis conducted in this paper is based on the general stability (or correctness) theory of operator-difference schemes.
Key words: Cauchy problem, second-order parabolic equation, operator-difference schemes, splitting schemes.
Received: 10.12.2013
English version:
Computational Mathematics and Mathematical Physics, 2014, Volume 54, Issue 6, Pages 953–962
DOI: https://doi.org/10.1134/S0965542514060128
Bibliographic databases:
Document Type: Article
UDC: 519.63
MSC: 65M06 (65M12)
Language: Russian
Citation: P. N. Vabishchevich, “Three-level schemes of the alternating triangular method”, Zh. Vychisl. Mat. Mat. Fiz., 54:6 (2014), 942–952; Comput. Math. Math. Phys., 54:6 (2014), 953–962
Citation in format AMSBIB
\Bibitem{Vab14}
\by P.~N.~Vabishchevich
\paper Three-level schemes of the alternating triangular method
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2014
\vol 54
\issue 6
\pages 942--952
\mathnet{http://mi.mathnet.ru/zvmmf10047}
\crossref{https://doi.org/10.7868/S0044466914060131}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3217266}
\elib{https://elibrary.ru/item.asp?id=21564448}
\transl
\jour Comput. Math. Math. Phys.
\yr 2014
\vol 54
\issue 6
\pages 953--962
\crossref{https://doi.org/10.1134/S0965542514060128}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000337148400005}
\elib{https://elibrary.ru/item.asp?id=24059413}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84902475084}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10047
  • https://www.mathnet.ru/eng/zvmmf/v54/i6/p942
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024