Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2014, Volume 54, Number 4, Page 720
DOI: https://doi.org/10.7868/S0044466914040127
(Mi zvmmf10025)
 

This article is cited in 4 scientific papers (total in 4 papers)

$N$-soliton solutions, Bäcklund transformation and conservation laws for the integro-differential nonlinear Schrödinger equation from the isotropic inhomogeneous Heisenberg spin magnetic chain

Pan Wanga, Bo Tianbca, Wen-Jun Liua, Kun Suna

a School of Science, P. O. Box  22, Beijing University of Posts and Telecommunications, Beijing 100876, China
b State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
c Key Laboratory of Information Photonics and Optical Communications (BUPT), Ministry of Education, P. O. Box 128 Beijing University of Posts and Telecommunications, Beijing 100876, China
Full-text PDF (118 kB) Citations (4)
References:
Abstract: Under investigation in this paper is an integro-differential nonlinear Schrödinger (IDNLS) equation, which is equivalent to the spin evolution equation of a classical in-homogeneous Heisenberg magnetic chain in the continuum limit. Based on the Hirota method, the bilinear form and $N$-soliton solution for the IDNLS equation are derived with the help of symbolic computation. Moreover, $N$-soliton solution for the IDNLS equation is expressed in terms of the double Wronskian and testified through the direct substitution into the bilinear form. Besides, the bilinear Bäcklund transformation and infinitely many conservation laws are also obtained for the IDNLS equation. Propagation characteristics and interaction behaviors of the solitons are discussed by analysis of such physical quantities as the soliton amplitude, width, velocity and initial phase. Interactions of the solitons are proved to be elastic through the asymptotic analysis. Effect of inhomogeneity on the interaction of the solitons is studied graphically.
Key words: integro-differential nonlinear Schrödinger equation, inhomogeneous Heisenberg magnetic chain, soliton solutions, double Wronskian, Hirota method, Bäcklund transformation, infinitely many conservation laws, symbolic computation.
Received: 08.08.2012
Revised: 20.11.2013
English version:
Computational Mathematics and Mathematical Physics, 2014, Volume 54, Issue 4, Pages 727–743
DOI: https://doi.org/10.1134/S0965542514040125
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: English
Citation: Pan Wang, Bo Tian, Wen-Jun Liu, Kun Sun, “$N$-soliton solutions, Bäcklund transformation and conservation laws for the integro-differential nonlinear Schrödinger equation from the isotropic inhomogeneous Heisenberg spin magnetic chain”, Zh. Vychisl. Mat. Mat. Fiz., 54:4 (2014), 720; Comput. Math. Math. Phys., 54:4 (2014), 727–743
Citation in format AMSBIB
\Bibitem{WanTiaLiu14}
\by Pan~Wang, Bo~Tian, Wen-Jun~Liu, Kun~Sun
\paper $N$-soliton solutions, B\"acklund transformation and conservation laws for the integro-differential nonlinear Schr\"odinger equation from the isotropic inhomogeneous Heisenberg spin magnetic chain
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2014
\vol 54
\issue 4
\pages 720
\mathnet{http://mi.mathnet.ru/zvmmf10025}
\crossref{https://doi.org/10.7868/S0044466914040127}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3200041}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014CMMPh..54..727W}
\elib{https://elibrary.ru/item.asp?id=21378526}
\transl
\jour Comput. Math. Math. Phys.
\yr 2014
\vol 54
\issue 4
\pages 727--743
\crossref{https://doi.org/10.1134/S0965542514040125}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000335679800011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84907421746}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10025
  • https://www.mathnet.ru/eng/zvmmf/v54/i4/p720
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024