Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2014, Volume 54, Number 4, Pages 562–568
DOI: https://doi.org/10.7868/S0044466914040115
(Mi zvmmf10016)
 

This article is cited in 7 scientific papers (total in 7 papers)

Can an a priori error estimate for an approximate solution of an ill-posed problem be comparable with the error in data?

A. S. Leonov

National Research Nuclear University “MEPhI”, Kashirskoe sh. 31, Moscow, 115409, Russia
Full-text PDF (209 kB) Citations (7)
References:
Abstract: For a linear operator equation of the first kind with perturbed data, it is shown that the global (on typical sets) a priori error estimate for its approximate solution can have the same order as that for the approximate data only if the operator of the problem is normally solvable. If the operator of the problem is given exactly, this is possible only if the problem is well-posed (stable).
Key words: regularization of ill-posed problems, a priori error estimation, normally solvable operator.
Received: 21.10.2013
English version:
Computational Mathematics and Mathematical Physics, 2014, Volume 54, Issue 4, Pages 575–581
DOI: https://doi.org/10.1134/S0965542514040113
Bibliographic databases:
Document Type: Article
UDC: 519.642.8
Language: Russian
Citation: A. S. Leonov, “Can an a priori error estimate for an approximate solution of an ill-posed problem be comparable with the error in data?”, Zh. Vychisl. Mat. Mat. Fiz., 54:4 (2014), 562–568; Comput. Math. Math. Phys., 54:4 (2014), 575–581
Citation in format AMSBIB
\Bibitem{Leo14}
\by A.~S.~Leonov
\paper Can an a priori error estimate for an approximate solution of an ill-posed problem be comparable with the error in data?
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2014
\vol 54
\issue 4
\pages 562--568
\mathnet{http://mi.mathnet.ru/zvmmf10016}
\crossref{https://doi.org/10.7868/S0044466914040115}
\elib{https://elibrary.ru/item.asp?id=21378517}
\transl
\jour Comput. Math. Math. Phys.
\yr 2014
\vol 54
\issue 4
\pages 575--581
\crossref{https://doi.org/10.1134/S0965542514040113}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000335679800002}
\elib{https://elibrary.ru/item.asp?id=23990909}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84907422067}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10016
  • https://www.mathnet.ru/eng/zvmmf/v54/i4/p562
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:395
    Full-text PDF :114
    References:75
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024