Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2014, Volume 54, Number 3, Pages 519–528
DOI: https://doi.org/10.7868/S004446691403003X
(Mi zvmmf10012)
 

This article is cited in 12 scientific papers (total in 12 papers)

Inverse problems for stationary Navier–Stokes systems

A. Yu. Chebotarevab

a Institute of Applied Mathematics, Far East Branch, Russian Academy of Sciences, ul. Radio 7, Vladivostok, 690041, Russia
b Far East Federal University, ul. Sukhanova 8, Vladivostok, 690950, Russia
References:
Abstract: An inverse problem for a nonlinear equation in a Hilbert space is considered in which the right-hand side that is a linear combination of given functionals is found from given values of these functionals on the solution. Sufficient conditions for the existence of a solution are established, and the solution set is shown to be homeomorphic to a finite-dimensional compact set. A boundary inverse problem for the three-dimensional thermal convection equations for a viscous incompressible fluid and an inverse magnetohydrodynamics problem are considered as applications.
Key words: operator Navier–Stokes equations, thermal convection equations, MHD equations, inverse problems, existence theorems.
Received: 14.01.2013
Revised: 09.10.2013
English version:
Computational Mathematics and Mathematical Physics, 2014, Volume 54, Issue 3, Pages 537–545
DOI: https://doi.org/10.1134/S0965542514030038
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: A. Yu. Chebotarev, “Inverse problems for stationary Navier–Stokes systems”, Zh. Vychisl. Mat. Mat. Fiz., 54:3 (2014), 519–528; Comput. Math. Math. Phys., 54:3 (2014), 537–545
Citation in format AMSBIB
\Bibitem{Che14}
\by A.~Yu.~Chebotarev
\paper Inverse problems for stationary Navier--Stokes systems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2014
\vol 54
\issue 3
\pages 519--528
\mathnet{http://mi.mathnet.ru/zvmmf10012}
\crossref{https://doi.org/10.7868/S004446691403003X}
\elib{https://elibrary.ru/item.asp?id=21204613}
\transl
\jour Comput. Math. Math. Phys.
\yr 2014
\vol 54
\issue 3
\pages 537--545
\crossref{https://doi.org/10.1134/S0965542514030038}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334236900015}
\elib{https://elibrary.ru/item.asp?id=21872637}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84898751408}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10012
  • https://www.mathnet.ru/eng/zvmmf/v54/i3/p519
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:416
    Full-text PDF :105
    References:69
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024