Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2014, Volume 54, Number 3, Page 503
DOI: https://doi.org/10.7868/S0044466914030089
(Mi zvmmf10010)
 

This article is cited in 1 scientific paper (total in 1 paper)

Dynamics of the generalized $(3+1)$-dimensional nonlinear Schrödinger equation in cosmic plasmas

Hui-Ling Zhenab, Bo Tianab, Min Liab, Yan Jiangab, Ming Wangab

a School of Science, P.O.Box 122, Beijing University of Posts and Telecommunications, Beijing 100876, China
b State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Full-text PDF (97 kB) Citations (1)
References:
Abstract: Under investigation in this paper is a generalized $(3+1)$-dimensional nonlinear Schrödinger equation with the variable coefficients, which governs the nonlinear dynamics of the ion-acoustic envelope solitons in the magnetized electron-positron-ion plasma with two-electron temperatures in space or astrophysics. Bilinear forms and Bäcklund transformations are derived through the Bell polynomials. $N$-soliton solutions are constructed in the form of the double Wronskian determinant and the $N$-th order polynomials in $N$ exponentials. Shape and motion of one soliton have been graphically analyzed, as well as the interactions of two and three solitons. When $\beta(t)$ and $\gamma(t)$ are both the periodic functions of the reduced time $t$, where $\gamma(t)$ is the loss (gain) coefficient, and $\beta(t)$ means the combined effects of the transverse perturbation and magnetic field, the shape and motion of one soliton as well as the interactions of two or three solitons will occur periodically. All the interactions can be elastic with certain coefficients.
Key words: generalized $(3+1)$-dimensional nonlinear Schrödinger equation, double Wronskian determinant, $N$-soliton solutions, Bäcklund transformation, Bell polynomials.
Received: 24.05.2013
Revised: 20.07.2013
English version:
Computational Mathematics and Mathematical Physics, 2014, Volume 54, Issue 3, Pages 512–521
DOI: https://doi.org/10.1134/S0965542514030087
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: English
Citation: Hui-Ling Zhen, Bo Tian, Min Li, Yan Jiang, Ming Wang, “Dynamics of the generalized $(3+1)$-dimensional nonlinear Schrödinger equation in cosmic plasmas”, Zh. Vychisl. Mat. Mat. Fiz., 54:3 (2014), 503; Comput. Math. Math. Phys., 54:3 (2014), 512–521
Citation in format AMSBIB
\Bibitem{ZheTiaLi14}
\by Hui-Ling~Zhen, Bo~Tian, Min~Li, Yan~Jiang, Ming~Wang
\paper Dynamics of the generalized $(3+1)$-dimensional nonlinear Schr\"odinger equation in cosmic plasmas
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2014
\vol 54
\issue 3
\pages 503
\mathnet{http://mi.mathnet.ru/zvmmf10010}
\crossref{https://doi.org/10.7868/S0044466914030089}
\elib{https://elibrary.ru/item.asp?id=21204611}
\transl
\jour Comput. Math. Math. Phys.
\yr 2014
\vol 54
\issue 3
\pages 512--521
\crossref{https://doi.org/10.1134/S0965542514030087}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334236900013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84898731761}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10010
  • https://www.mathnet.ru/eng/zvmmf/v54/i3/p503
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:295
    Full-text PDF :83
    References:67
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024