|
Zapiski Nauchnykh Seminarov POMI, 2007, Volume 345, Pages 105–112
(Mi znsl99)
|
|
|
|
Radial behavior of positive harmonic Bloch functions
E. Doubtsov St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Let $u$ be a strictly positive harmonic Bloch function on the upper half-space ${\mathbb R}_+^{d+1}$. Then the set
$$
\left\{x\in{\mathbb R}^d:\ \limsup_{y\to 0+}|{\log u(x, y)}|<\infty\right\}
$$
has the maximal Hausdorff dimension.
Received: 21.03.2007
Citation:
E. Doubtsov, “Radial behavior of positive harmonic Bloch functions”, Investigations on linear operators and function theory. Part 35, Zap. Nauchn. Sem. POMI, 345, POMI, St. Petersburg, 2007, 105–112; J. Math. Sci. (N. Y.), 148:6 (2008), 841–845
Linking options:
https://www.mathnet.ru/eng/znsl99 https://www.mathnet.ru/eng/znsl/v345/p105
|
Statistics & downloads: |
Abstract page: | 200 | Full-text PDF : | 55 | References: | 40 |
|