Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1998, Volume 255, Pages 177–183 (Mi znsl983)  

A property of purely hyperbolic Fuchsian groups of the second kind

O. L. Semenova

Saint-Petersburg State University
Abstract: Let $G$ be a purely hyperbolic finitely generated non-elementary Fuchsian group of the second kind. If $\Lambda$ is the limit set of the group $G$, then the function $\log(\mathrm{dist}\,(x,\Lambda))$ belongs to the class BMO. This follows from the fact that $\Lambda$ is porous, which is proved in the paper.
Received: 22.12.1997
English version:
Journal of Mathematical Sciences (New York), 2001, Volume 107, Issue 4, Pages 4092–4096
DOI: https://doi.org/10.1023/A:1012448902514
Bibliographic databases:
UDC: 517.544
Language: Russian
Citation: O. L. Semenova, “A property of purely hyperbolic Fuchsian groups of the second kind”, Investigations on linear operators and function theory. Part 26, Zap. Nauchn. Sem. POMI, 255, POMI, St. Petersburg, 1998, 177–183; J. Math. Sci. (New York), 107:4 (2001), 4092–4096
Citation in format AMSBIB
\Bibitem{Sem98}
\by O.~L.~Semenova
\paper A property of purely hyperbolic Fuchsian groups of the second kind
\inbook Investigations on linear operators and function theory. Part~26
\serial Zap. Nauchn. Sem. POMI
\yr 1998
\vol 255
\pages 177--183
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl983}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1692908}
\zmath{https://zbmath.org/?q=an:0989.30029}
\transl
\jour J. Math. Sci. (New York)
\yr 2001
\vol 107
\issue 4
\pages 4092--4096
\crossref{https://doi.org/10.1023/A:1012448902514}
Linking options:
  • https://www.mathnet.ru/eng/znsl983
  • https://www.mathnet.ru/eng/znsl/v255/p177
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:142
    Full-text PDF :49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024