Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1999, Volume 257, Pages 16–43 (Mi znsl981)  

This article is cited in 3 scientific papers (total in 3 papers)

On the projecting in the space of solenoidal vector fields

M. I. Belisheva, A. K. Glasmanb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Saint-Petersburg State University
Full-text PDF (300 kB) Citations (3)
Abstract: Let $\Omega\subset\mathbf R^3$ be a bounded domain; let $\Omega^\xi:=\{x\in\Omega\mid\operatorname{dist}(x,\partial\Omega)<\xi\},\xi>0$ be an increasing family of subdomains; let $\varepsilon=\varepsilon(x)$ be a positive function in $\overline{\Omega}$; $\mathscr H:=\{\bold y=\bold y(x)\mid\int_\Omega dx\varepsilon|\bold y|^2<\infty,\,\mathrm {div}\,\varepsilon\bold y=0$ in ${\Omega}\}$ be a space of $\varepsilon$-solenoidal vector fields; let $\mathscr H^\xi:=\{\bold y\in\mathscr H\mid\mathrm {supp}\,\bold y\subset\overline{\Omega^\xi}\}$, $\xi>0$ be a family of subspaces; let $G^{\xi}$ be orthogonal projectors in $\mathscr H$ onto $\mathscr H^\xi$. The unitary transform which diagonalizes the family of projectors $\{G^\xi\}$ is constructed: it transfers $\int\xi dG^\xi$ into an operator multiplying by independent variable. An isometry of the transform is proved with the help of the operator Riccati equation for the Neumann–to–Dirichlet map.
Received: 20.11.1998
English version:
Journal of Mathematical Sciences (New York), 2002, Volume 108, Issue 5, Pages 642–664
DOI: https://doi.org/10.1023/A:1013290927107
Bibliographic databases:
UDC: 517.946
Language: Russian
Citation: M. I. Belishev, A. K. Glasman, “On the projecting in the space of solenoidal vector fields”, Mathematical problems in the theory of wave propagation. Part 28, Zap. Nauchn. Sem. POMI, 257, POMI, St. Petersburg, 1999, 16–43; J. Math. Sci. (New York), 108:5 (2002), 642–664
Citation in format AMSBIB
\Bibitem{BelGla99}
\by M.~I.~Belishev, A.~K.~Glasman
\paper On the projecting in the space of solenoidal vector fields
\inbook Mathematical problems in the theory of wave propagation. Part~28
\serial Zap. Nauchn. Sem. POMI
\yr 1999
\vol 257
\pages 16--43
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl981}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1754690}
\zmath{https://zbmath.org/?q=an:0982.35121}
\transl
\jour J. Math. Sci. (New York)
\yr 2002
\vol 108
\issue 5
\pages 642--664
\crossref{https://doi.org/10.1023/A:1013290927107}
Linking options:
  • https://www.mathnet.ru/eng/znsl981
  • https://www.mathnet.ru/eng/znsl/v257/p16
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:204
    Full-text PDF :67
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024