Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1999, Volume 256, Pages 212–223 (Mi znsl978)  

This article is cited in 11 scientific papers (total in 11 papers)

Central limit theorem for random strict partition

Yu. V. Yakubovich

Saint-Petersburg State University
Abstract: We consider a set of partitions of number $n$ on distinct summands (so called strict partitions) with uniform distribution on it. We investigate fluctuations of random partition near its limit shape, for large $n$. Usage of geometrical language allows to state the problem in terms of limit behaviour of random step functions (Young diagram). Central limit theorem for such functions is proven.
The method of investigation essentially uses the notion of large canonical ensemble of partitions.
Received: 24.06.1999
English version:
Journal of Mathematical Sciences (New York), 2001, Volume 107, Issue 5, Pages 4296–4304
DOI: https://doi.org/10.1023/A:1012433926621
Bibliographic databases:
UDC: 519.212
Language: Russian
Citation: Yu. V. Yakubovich, “Central limit theorem for random strict partition”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part III, Zap. Nauchn. Sem. POMI, 256, POMI, St. Petersburg, 1999, 212–223; J. Math. Sci. (New York), 107:5 (2001), 4296–4304
Citation in format AMSBIB
\Bibitem{Yak99}
\by Yu.~V.~Yakubovich
\paper Central limit theorem for random strict partition
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~III
\serial Zap. Nauchn. Sem. POMI
\yr 1999
\vol 256
\pages 212--223
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl978}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1708566}
\zmath{https://zbmath.org/?q=an:0989.11051}
\transl
\jour J. Math. Sci. (New York)
\yr 2001
\vol 107
\issue 5
\pages 4296--4304
\crossref{https://doi.org/10.1023/A:1012433926621}
Linking options:
  • https://www.mathnet.ru/eng/znsl978
  • https://www.mathnet.ru/eng/znsl/v256/p212
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:210
    Full-text PDF :79
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024