Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1999, Volume 256, Pages 168–211 (Mi znsl977)  

This article is cited in 9 scientific papers (total in 9 papers)

Strong version of the basic deciding algorithm for the existential theory of real fields

A. L. Chistov

St. Petersburg Institute for Informatics and Automation of RAS
Full-text PDF (419 kB) Citations (9)
Abstract: Let $U$ be a real algebraic variety in $n$-dimensional affine space which is a set of all zeroes of a family of polynomials of degrees less than $d$. In the case when $U$ is bounded (it is the main case) an algorithm of polynomial complexity is described for constructing a subset of $U$ with the number of elements bounded from above by $d^n$ which for every $s$ has a non–empty intersection with every cycle with coefficients from ${\mathbb Z}/2{\mathbb Z}$ of dimension $s$ of the closure of the set of smooth points of dimension $s$ of $U$.
Received: 15.01.1999
English version:
Journal of Mathematical Sciences (New York), 2001, Volume 107, Issue 5, Pages 4265–4295
DOI: https://doi.org/10.1023/A:1012481809783
Bibliographic databases:
UDC: 519.5
Language: Russian
Citation: A. L. Chistov, “Strong version of the basic deciding algorithm for the existential theory of real fields”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part III, Zap. Nauchn. Sem. POMI, 256, POMI, St. Petersburg, 1999, 168–211; J. Math. Sci. (New York), 107:5 (2001), 4265–4295
Citation in format AMSBIB
\Bibitem{Chi99}
\by A.~L.~Chistov
\paper Strong version of the basic deciding algorithm for the existential theory of real fields
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~III
\serial Zap. Nauchn. Sem. POMI
\yr 1999
\vol 256
\pages 168--211
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl977}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1708565}
\zmath{https://zbmath.org/?q=an:0980.14034}
\transl
\jour J. Math. Sci. (New York)
\yr 2001
\vol 107
\issue 5
\pages 4265--4295
\crossref{https://doi.org/10.1023/A:1012481809783}
Linking options:
  • https://www.mathnet.ru/eng/znsl977
  • https://www.mathnet.ru/eng/znsl/v256/p168
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:207
    Full-text PDF :55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024