|
Zapiski Nauchnykh Seminarov POMI, 1999, Volume 256, Pages 129–144
(Mi znsl975)
|
|
|
|
Spectral estimations for Laplace operator for the discrete Heisenberg group
K. P. Kokhas', A. Suvorov Saint-Petersburg State University
Abstract:
Let $H$ be the discrete 3-dimensional Heisenberg group with the standard generators $x, y,~z$. The element $\Delta$ of the group algebra for $H$ of the form $\Delta=(x+x^{-1}+y+y^{-1})/4$ is called the Laplace operator. This operator can also be defined as transition operator for random walk on the group.
The spectrum of $\Delta$ in the regular representation of $H$ is the interval $[-1,1]$. Let $E(A)$, where $A$ is a subset of $[-1,1]$, be a family of spectral projectors for $\Delta$ and $m(A)=(E(A)e,e)$ be the corresponding spectral measure. Here $e$ is the characteristic function of the unit element of the group $H$. We estimate the value $m([-1,-1+t]\cup [1-t,1])$ when $t$ tends to 0. More precisely we prove the inequality
$$
m([-1,-1+t]\cup [1-t,1])>\mathrm{const}\,t^{2+\alpha}
$$
for any positive alpha.
Received: 10.06.1999
Citation:
K. P. Kokhas', A. Suvorov, “Spectral estimations for Laplace operator for the discrete Heisenberg group”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part III, Zap. Nauchn. Sem. POMI, 256, POMI, St. Petersburg, 1999, 129–144; J. Math. Sci. (New York), 107:5 (2001), 4237–4247
Linking options:
https://www.mathnet.ru/eng/znsl975 https://www.mathnet.ru/eng/znsl/v256/p129
|
Statistics & downloads: |
Abstract page: | 225 | Full-text PDF : | 65 |
|