Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1999, Volume 256, Pages 129–144 (Mi znsl975)  

Spectral estimations for Laplace operator for the discrete Heisenberg group

K. P. Kokhas', A. Suvorov

Saint-Petersburg State University
Abstract: Let $H$ be the discrete 3-dimensional Heisenberg group with the standard generators $x, y,~z$. The element $\Delta$ of the group algebra for $H$ of the form $\Delta=(x+x^{-1}+y+y^{-1})/4$ is called the Laplace operator. This operator can also be defined as transition operator for random walk on the group.
The spectrum of $\Delta$ in the regular representation of $H$ is the interval $[-1,1]$. Let $E(A)$, where $A$ is a subset of $[-1,1]$, be a family of spectral projectors for $\Delta$ and $m(A)=(E(A)e,e)$ be the corresponding spectral measure. Here $e$ is the characteristic function of the unit element of the group $H$. We estimate the value $m([-1,-1+t]\cup [1-t,1])$ when $t$ tends to 0. More precisely we prove the inequality
$$ m([-1,-1+t]\cup [1-t,1])>\mathrm{const}\,t^{2+\alpha} $$
for any positive alpha.
Received: 10.06.1999
English version:
Journal of Mathematical Sciences (New York), 2001, Volume 107, Issue 5, Pages 4237–4247
DOI: https://doi.org/10.1023/A:1012477708874
Bibliographic databases:
UDC: 517.986
Language: Russian
Citation: K. P. Kokhas', A. Suvorov, “Spectral estimations for Laplace operator for the discrete Heisenberg group”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part III, Zap. Nauchn. Sem. POMI, 256, POMI, St. Petersburg, 1999, 129–144; J. Math. Sci. (New York), 107:5 (2001), 4237–4247
Citation in format AMSBIB
\Bibitem{KokSuv99}
\by K.~P.~Kokhas', A.~Suvorov
\paper Spectral estimations for Laplace operator for the discrete Heisenberg group
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~III
\serial Zap. Nauchn. Sem. POMI
\yr 1999
\vol 256
\pages 129--144
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl975}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1708563}
\zmath{https://zbmath.org/?q=an:0982.22006}
\transl
\jour J. Math. Sci. (New York)
\yr 2001
\vol 107
\issue 5
\pages 4237--4247
\crossref{https://doi.org/10.1023/A:1012477708874}
Linking options:
  • https://www.mathnet.ru/eng/znsl975
  • https://www.mathnet.ru/eng/znsl/v256/p129
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:221
    Full-text PDF :64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024