Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2007, Volume 345, Pages 55–84 (Mi znsl97)  

This article is cited in 5 scientific papers (total in 5 papers)

Admissibility criteria for model subspaces with fast growth of the argument of the generating inner function

Yu. S. Belov
Full-text PDF (318 kB) Citations (5)
References:
Abstract: Let $\Theta$ be an inner function in the upper half plane and let $K_\Theta=H^2\ominus\Theta H^2$ be the associated model subspace of the Hardy space $H^2$. We call a non-negative function $\omega$ $\Theta$-admissible if in the space $K_\Theta$ there exists a non-zero function $f\in K_\Theta$ such that $|f|\leq\omega$ a.e. on $\mathbb{R}$. We give some sufficient conditions of $\Theta$-admissibility for the case when $\Theta$ is meromorphic and $\arg\Theta$ grows fast ($(\arg\Theta)'$ tends to infinity).
Received: 09.11.2006
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 148, Issue 6, Pages 813–829
DOI: https://doi.org/10.1007/s10958-008-0028-x
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: Yu. S. Belov, “Admissibility criteria for model subspaces with fast growth of the argument of the generating inner function”, Investigations on linear operators and function theory. Part 35, Zap. Nauchn. Sem. POMI, 345, POMI, St. Petersburg, 2007, 55–84; J. Math. Sci. (N. Y.), 148:6 (2008), 813–829
Citation in format AMSBIB
\Bibitem{Bel07}
\by Yu.~S.~Belov
\paper Admissibility criteria for model subspaces with fast growth of the argument of the generating inner function
\inbook Investigations on linear operators and function theory. Part~35
\serial Zap. Nauchn. Sem. POMI
\yr 2007
\vol 345
\pages 55--84
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl97}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2432176}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2008
\vol 148
\issue 6
\pages 813--829
\crossref{https://doi.org/10.1007/s10958-008-0028-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38549174599}
Linking options:
  • https://www.mathnet.ru/eng/znsl97
  • https://www.mathnet.ru/eng/znsl/v345/p55
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:264
    Full-text PDF :103
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024