|
Zapiski Nauchnykh Seminarov POMI, 2007, Volume 345, Pages 55–84
(Mi znsl97)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Admissibility criteria for model subspaces with fast growth of the argument of the generating inner function
Yu. S. Belov
Abstract:
Let $\Theta$ be an inner function in the upper half plane and let $K_\Theta=H^2\ominus\Theta H^2$ be the associated model subspace of the Hardy space $H^2$. We call a non-negative function $\omega$ $\Theta$-admissible if in the space $K_\Theta$ there exists a non-zero function $f\in K_\Theta$ such that $|f|\leq\omega$ a.e. on $\mathbb{R}$. We give some sufficient conditions of $\Theta$-admissibility for the case when $\Theta$ is meromorphic
and $\arg\Theta$ grows fast ($(\arg\Theta)'$ tends to infinity).
Received: 09.11.2006
Citation:
Yu. S. Belov, “Admissibility criteria for model subspaces with fast growth of the argument of the generating inner function”, Investigations on linear operators and function theory. Part 35, Zap. Nauchn. Sem. POMI, 345, POMI, St. Petersburg, 2007, 55–84; J. Math. Sci. (N. Y.), 148:6 (2008), 813–829
Linking options:
https://www.mathnet.ru/eng/znsl97 https://www.mathnet.ru/eng/znsl/v345/p55
|
Statistics & downloads: |
Abstract page: | 264 | Full-text PDF : | 103 | References: | 43 |
|