Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2003, Volume 300, Pages 87–121 (Mi znsl966)  

This article is cited in 11 scientific papers (total in 11 papers)

Exponentially small splitting of separatrices for whiskered tori in Hamiltonian systems

A. Delshams, P. Gutiérrez

Polytechnic University of Catalonia, Department of Applied Mathematics I
References:
Abstract: We study the existence of transverse homoclinic orbits in a singular or weakly hyperbolic Hamiltonian, with $3$ degrees of freedom, as a model for the behaviour of a nearly-integrable Hamiltonian near a simple resonance. The example considered consists of an integrable Hamiltonian possessing a $2$-dimensional hyperbolic invariant torus with fast frequencies $\omega/\sqrt\varepsilon$ and coincident whiskers or separatrices, plus a perturbation of order $\mu=\varepsilon^p$, giving rise to an exponentially small splitting of separatrices. We show that asymptotic estimates for the transversality of the intersections can be obtained if $\omega$ satisfies certain arithmetic properties. More precisely, we assume that $\omega$ is a quadratic vector (i.e. the frequency ratio is a quadratic irrational number), and generalize the good arithmetic properties of the golden vector. We provide a sufficient condition on the quadratic vector $\omega$ ensuring that the Poincaré–Melnikov method (used for the golden vector in a previous work) can be applied to establish the existence of transverse homoclinic orbits and, in a more restrictive case, their continuation for all values of $\varepsilon\to0$.
Received: 08.05.2003
English version:
Journal of Mathematical Sciences (New York), 2005, Volume 128, Issue 2, Pages 2726–2746
DOI: https://doi.org/10.1007/s10958-005-0224-x
Bibliographic databases:
UDC: 517.9
Language: English
Citation: A. Delshams, P. Gutiérrez, “Exponentially small splitting of separatrices for whiskered tori in Hamiltonian systems”, Representation theory, dynamical systems. Part VIII, Special issue, Zap. Nauchn. Sem. POMI, 300, POMI, St. Petersburg, 2003, 87–121; J. Math. Sci. (N. Y.), 128:2 (2005), 2726–2746
Citation in format AMSBIB
\Bibitem{DelGut03}
\by A.~Delshams, P.~Guti\'errez
\paper Exponentially small splitting of separatrices for whiskered tori in Hamiltonian systems
\inbook Representation theory, dynamical systems. Part~VIII
\bookinfo Special issue
\serial Zap. Nauchn. Sem. POMI
\yr 2003
\vol 300
\pages 87--121
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl966}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1993029}
\zmath{https://zbmath.org/?q=an:1120.37038}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2005
\vol 128
\issue 2
\pages 2726--2746
\crossref{https://doi.org/10.1007/s10958-005-0224-x}
Linking options:
  • https://www.mathnet.ru/eng/znsl966
  • https://www.mathnet.ru/eng/znsl/v300/p87
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:191
    Full-text PDF :48
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024