Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2003, Volume 300, Pages 56–64 (Mi znsl962)  

This article is cited in 7 scientific papers (total in 7 papers)

Billiards and nonholonomic distributions

Y. Baryshnikov, V. Zharnitsky

Alcatel-Lucent Bell Labs
Full-text PDF (173 kB) Citations (7)
References:
Abstract: In this note, billiards with full families of periodic orbits are considered. It is shown that construction of a convex billiard with a “rational” caustic (i.e., carrying only periodic orbits) can be reformulated as a problem of finding a closed curve tangent to a $(N-1)$-dimensional distribution on a $(2N-1)$-dimensional manifold. The properties of this distribution are described as well as some important consequences for the billiards with rational caustics. A very particular application of our construction states that an ellipse can be infinitesimally perturbed so that any chosen rational elliptic caustic will persist.
Received: 30.11.2002
English version:
Journal of Mathematical Sciences (New York), 2005, Volume 128, Issue 2, Pages 2706–2710
DOI: https://doi.org/10.1007/s10958-005-0220-1
Bibliographic databases:
UDC: 517.9
Language: English
Citation: Y. Baryshnikov, V. Zharnitsky, “Billiards and nonholonomic distributions”, Representation theory, dynamical systems. Part VIII, Special issue, Zap. Nauchn. Sem. POMI, 300, POMI, St. Petersburg, 2003, 56–64; J. Math. Sci. (N. Y.), 128:2 (2005), 2706–2710
Citation in format AMSBIB
\Bibitem{BarZha03}
\by Y.~Baryshnikov, V.~Zharnitsky
\paper Billiards and nonholonomic distributions
\inbook Representation theory, dynamical systems. Part~VIII
\bookinfo Special issue
\serial Zap. Nauchn. Sem. POMI
\yr 2003
\vol 300
\pages 56--64
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl962}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1993025}
\zmath{https://zbmath.org/?q=an:1120.37033}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2005
\vol 128
\issue 2
\pages 2706--2710
\crossref{https://doi.org/10.1007/s10958-005-0220-1}
Linking options:
  • https://www.mathnet.ru/eng/znsl962
  • https://www.mathnet.ru/eng/znsl/v300/p56
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:219
    Full-text PDF :97
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024