Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1998, Volume 255, Pages 221–243 (Mi znsl949)  

A variational formula for Bergman kernels

N. A. Shirokov

Saint-Petersburg State Electrotechnical University
Abstract: For a given family of domains $\Omega_t\subset\mathbb C^n$, $t\in[0,1]$, under some assumptions a formula for $B_1(z,s)-B_0(z,s)$ is established, where $B_0$ and $B_1$ are the Bergman kernels for $\Omega_0$ and $\Omega_1$. As an application of this formula, we obtain two terms in the asymptotics of $B(z,z)$ as $z\to\partial\Omega$ for a special class of domains.
Received: 17.12.1997
English version:
Journal of Mathematical Sciences (New York), 2001, Volume 107, Issue 4, Pages 4125–4142
DOI: https://doi.org/10.1023/A:1012405120261
Bibliographic databases:
UDC: 517.94
Language: Russian
Citation: N. A. Shirokov, “A variational formula for Bergman kernels”, Investigations on linear operators and function theory. Part 26, Zap. Nauchn. Sem. POMI, 255, POMI, St. Petersburg, 1998, 221–243; J. Math. Sci. (New York), 107:4 (2001), 4125–4142
Citation in format AMSBIB
\Bibitem{Shi98}
\by N.~A.~Shirokov
\paper A variational formula for Bergman kernels
\inbook Investigations on linear operators and function theory. Part~26
\serial Zap. Nauchn. Sem. POMI
\yr 1998
\vol 255
\pages 221--243
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl949}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1692896}
\zmath{https://zbmath.org/?q=an:0980.32001}
\transl
\jour J. Math. Sci. (New York)
\yr 2001
\vol 107
\issue 4
\pages 4125--4142
\crossref{https://doi.org/10.1023/A:1012405120261}
Linking options:
  • https://www.mathnet.ru/eng/znsl949
  • https://www.mathnet.ru/eng/znsl/v255/p221
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:182
    Full-text PDF :64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024