|
Zapiski Nauchnykh Seminarov POMI, 1998, Volume 255, Pages 221–243
(Mi znsl949)
|
|
|
|
A variational formula for Bergman kernels
N. A. Shirokov Saint-Petersburg State Electrotechnical University
Abstract:
For a given family of domains $\Omega_t\subset\mathbb C^n$, $t\in[0,1]$, under some assumptions a formula for $B_1(z,s)-B_0(z,s)$ is established, where $B_0$ and $B_1$ are the Bergman kernels for $\Omega_0$ and $\Omega_1$. As an application of this formula, we obtain two terms in the asymptotics of $B(z,z)$ as
$z\to\partial\Omega$ for a special class of domains.
Received: 17.12.1997
Citation:
N. A. Shirokov, “A variational formula for Bergman kernels”, Investigations on linear operators and function theory. Part 26, Zap. Nauchn. Sem. POMI, 255, POMI, St. Petersburg, 1998, 221–243; J. Math. Sci. (New York), 107:4 (2001), 4125–4142
Linking options:
https://www.mathnet.ru/eng/znsl949 https://www.mathnet.ru/eng/znsl/v255/p221
|
Statistics & downloads: |
Abstract page: | 182 | Full-text PDF : | 64 |
|