|
Zapiski Nauchnykh Seminarov POMI, 1998, Volume 255, Pages 184–197
(Mi znsl947)
|
|
|
|
This article is cited in 7 scientific papers (total in 7 papers)
On the invariance of some classes of holomorphic functions under integral and differential operators
F. A. Shamoyan, I. N. Kursina I. G. Petrovsky Bryansk State Pedagogical University
Abstract:
The following classes of functions analytic in the unit disk are considered:
$$
N^p_\omega=\biggl\{f\in H(D):\|T(f)\|_{L^p_{(\omega)}}=\bigl(\int\limits^1_0\omega(1-r)T^p(f,r)dr\bigr)^{1/p}<+\infty\biggr\},
$$
$$
\tilde N^p_\omega=\biggl\{f\in H(D):\int^1_0\,\int^\pi_{-\pi}\omega(1-r)\bigl(\ln^+|f(re^{i\varphi})|\bigr)^p\,rdrd\varphi<+\infty\biggr\},
$$
where $T(f,r)=\frac1{2\pi}\int\limits^\pi_{-\pi}\ln^+|f(re^{i\varphi})|d\varphi$ is the Nevanlinna haracteristic and $\omega$ is a positive function on $(0,1]$. Necessary and sufficient conditions on $\omega$ are established, under which the classes $N^p_\omega$ and $\tilde N^p_\omega$ are invariant under the operators of differentiation and integration.
Received: 20.12.1997
Citation:
F. A. Shamoyan, I. N. Kursina, “On the invariance of some classes of holomorphic functions under integral and differential operators”, Investigations on linear operators and function theory. Part 26, Zap. Nauchn. Sem. POMI, 255, POMI, St. Petersburg, 1998, 184–197; J. Math. Sci. (New York), 107:4 (2001), 4097–4107
Linking options:
https://www.mathnet.ru/eng/znsl947 https://www.mathnet.ru/eng/znsl/v255/p184
|
Statistics & downloads: |
Abstract page: | 203 | Full-text PDF : | 79 |
|