Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1998, Volume 255, Pages 184–197 (Mi znsl947)  

This article is cited in 7 scientific papers (total in 7 papers)

On the invariance of some classes of holomorphic functions under integral and differential operators

F. A. Shamoyan, I. N. Kursina

I. G. Petrovsky Bryansk State Pedagogical University
Full-text PDF (205 kB) Citations (7)
Abstract: The following classes of functions analytic in the unit disk are considered:
$$ N^p_\omega=\biggl\{f\in H(D):\|T(f)\|_{L^p_{(\omega)}}=\bigl(\int\limits^1_0\omega(1-r)T^p(f,r)dr\bigr)^{1/p}<+\infty\biggr\}, $$

$$ \tilde N^p_\omega=\biggl\{f\in H(D):\int^1_0\,\int^\pi_{-\pi}\omega(1-r)\bigl(\ln^+|f(re^{i\varphi})|\bigr)^p\,rdrd\varphi<+\infty\biggr\}, $$
where $T(f,r)=\frac1{2\pi}\int\limits^\pi_{-\pi}\ln^+|f(re^{i\varphi})|d\varphi$ is the Nevanlinna haracteristic and $\omega$ is a positive function on $(0,1]$. Necessary and sufficient conditions on $\omega$ are established, under which the classes $N^p_\omega$ and $\tilde N^p_\omega$ are invariant under the operators of differentiation and integration.
Received: 20.12.1997
English version:
Journal of Mathematical Sciences (New York), 2001, Volume 107, Issue 4, Pages 4097–4107
DOI: https://doi.org/10.1023/A:1012401019352
Bibliographic databases:
UDC: 517.94
Language: Russian
Citation: F. A. Shamoyan, I. N. Kursina, “On the invariance of some classes of holomorphic functions under integral and differential operators”, Investigations on linear operators and function theory. Part 26, Zap. Nauchn. Sem. POMI, 255, POMI, St. Petersburg, 1998, 184–197; J. Math. Sci. (New York), 107:4 (2001), 4097–4107
Citation in format AMSBIB
\Bibitem{ShaKur98}
\by F.~A.~Shamoyan, I.~N.~Kursina
\paper On the invariance of some classes of holomorphic functions under integral and differential operators
\inbook Investigations on linear operators and function theory. Part~26
\serial Zap. Nauchn. Sem. POMI
\yr 1998
\vol 255
\pages 184--197
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl947}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1692904}
\zmath{https://zbmath.org/?q=an:1134.30326}
\transl
\jour J. Math. Sci. (New York)
\yr 2001
\vol 107
\issue 4
\pages 4097--4107
\crossref{https://doi.org/10.1023/A:1012401019352}
Linking options:
  • https://www.mathnet.ru/eng/znsl947
  • https://www.mathnet.ru/eng/znsl/v255/p184
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:203
    Full-text PDF :79
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024