Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2003, Volume 301, Pages 144–171 (Mi znsl943)  

This article is cited in 6 scientific papers (total in 6 papers)

On algebras of skew polynomials generated by quadratic homogeneous relations

A. V. Golovashkina, V. M. Maximovb

a Tver State Technical University
b Russian State University for the Humanities
Full-text PDF (293 kB) Citations (6)
References:
Abstract: We consider algebras, with two generators $a$ and $b$, generated by the quadratic relations $ba=\alpha a^2+\beta ab+\gamma b^2$, where the coefficients $\alpha$, $\beta$, and $\gamma$ belong to an arbitrary field $F$ of characteristics $0$. We find conditions for the algebra to be expressed as a skew polynomial algebra with generator $b$ over the polynomial ring $F[a]$. These conditions are equivalent to the existence of the Poincaré–Birkhoff–Witt basis, i.e., basis of the form $\{a^m,b^n\}$.
Received: 19.08.2003
English version:
Journal of Mathematical Sciences (New York), 2005, Volume 129, Issue 2, Pages 3757–3771
DOI: https://doi.org/10.1007/s10958-005-0311-z
Bibliographic databases:
UDC: 512.55
Language: Russian
Citation: A. V. Golovashkin, V. M. Maximov, “On algebras of skew polynomials generated by quadratic homogeneous relations”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IX, Zap. Nauchn. Sem. POMI, 301, POMI, St. Petersburg, 2003, 144–171; J. Math. Sci. (N. Y.), 129:2 (2005), 3757–3771
Citation in format AMSBIB
\Bibitem{GolMax03}
\by A.~V.~Golovashkin, V.~M.~Maximov
\paper On algebras of skew polynomials generated by quadratic homogeneous relations
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~IX
\serial Zap. Nauchn. Sem. POMI
\yr 2003
\vol 301
\pages 144--171
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl943}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2032053}
\zmath{https://zbmath.org/?q=an:1144.16311}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2005
\vol 129
\issue 2
\pages 3757--3771
\crossref{https://doi.org/10.1007/s10958-005-0311-z}
Linking options:
  • https://www.mathnet.ru/eng/znsl943
  • https://www.mathnet.ru/eng/znsl/v301/p144
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:329
    Full-text PDF :70
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024