|
Zapiski Nauchnykh Seminarov POMI, 1998, Volume 255, Pages 140–147
(Mi znsl941)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
The monotonicity of average power means
A. N. Petrov Saint-Petersburg State University
Abstract:
A new numerical inequality for average power means is presented. Let $\alpha,\beta\in[-\infty,+\infty]$
and let $a=(a_k)_{k\ge1}$ be a sequence of positive numbers. Consider the operator $M_{\alpha}(a)=\biggl\{\biggl(\dfrac{a_1^{\alpha}+a_2^{\alpha}+\ldots+a_k^{\alpha}}k\biggr)^\frac1{\alpha}\biggr\}_{k\ge1}$. We denote by $M_{\beta}\circ M_{\alpha}$ the superposition of these operators. The following assertion is proved: if $\alpha<\beta$, then $M_{\beta}\circ M_{\alpha}(a)\le M_{\alpha}\circ M_{\beta}(a)$.
Received: 23.02.1998
Citation:
A. N. Petrov, “The monotonicity of average power means”, Investigations on linear operators and function theory. Part 26, Zap. Nauchn. Sem. POMI, 255, POMI, St. Petersburg, 1998, 140–147; J. Math. Sci. (New York), 107:4 (2001), 4067–4072
Linking options:
https://www.mathnet.ru/eng/znsl941 https://www.mathnet.ru/eng/znsl/v255/p140
|
Statistics & downloads: |
Abstract page: | 152 | Full-text PDF : | 74 |
|