|
Zapiski Nauchnykh Seminarov POMI, 2007, Volume 345, Pages 5–24
(Mi znsl94)
|
|
|
|
On translation and dilation invariant subspaces of $L^p(\mathbb R^n)$, $0<p<1$
A. B. Aleksandrov St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
We prove that each translation and dilation invariant subspace $X\subset L^p(\mathbb R^n)$, $X\ne L^p(\mathbb R^n)$, is contained in a maximal translation and dilation invariant subspace of $L^p(\mathbb R^n)$. Moreover, we prove that the set of all maximal translation and dilation invariant subspaces of $L^p(\mathbb R^n)$ has the power of the continuum.
Received: 02.04.2007
Citation:
A. B. Aleksandrov, “On translation and dilation invariant subspaces of $L^p(\mathbb R^n)$, $0<p<1$”, Investigations on linear operators and function theory. Part 35, Zap. Nauchn. Sem. POMI, 345, POMI, St. Petersburg, 2007, 5–24; J. Math. Sci. (N. Y.), 148:6 (2008), 785–794
Linking options:
https://www.mathnet.ru/eng/znsl94 https://www.mathnet.ru/eng/znsl/v345/p5
|
Statistics & downloads: |
Abstract page: | 285 | Full-text PDF : | 81 | References: | 34 |
|