Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2003, Volume 301, Pages 5–34 (Mi znsl935)  

This article is cited in 1 scientific paper (total in 1 paper)

Zur Theorie der einfach transitiven Permutationsgruppen [A contribution to theory of transitive permutation groups]

I. Schur
Full-text PDF (299 kB) Citations (1)
References:
Abstract: This is a Russian translation of the famous paper by I. Schur in which the method of Schur rings is introduced. The method is used to prove that every primitive permutation group containing a regular cyclic subgroup of composite order is 2-transitive.
Bibliographic databases:
UDC: 512.542.72
Language: Russian
Citation: I. Schur, “Zur Theorie der einfach transitiven Permutationsgruppen [A contribution to theory of transitive permutation groups]”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IX, Zap. Nauchn. Sem. POMI, 301, POMI, St. Petersburg, 2003, 5–34
Citation in format AMSBIB
\Bibitem{Sch03}
\by I.~Schur
\paper Zur Theorie der einfach transitiven Permutationsgruppen [A~contribution to theory of transitive permutation groups]
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~IX
\serial Zap. Nauchn. Sem. POMI
\yr 2003
\vol 301
\pages 5--34
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl935}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2032050}
\zmath{https://zbmath.org/?q=an:0007.14903}
Linking options:
  • https://www.mathnet.ru/eng/znsl935
  • https://www.mathnet.ru/eng/znsl/v301/p5
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:397
    Full-text PDF :185
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024