Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1998, Volume 255, Pages 36–53 (Mi znsl931)  

The sharp constant in Jackson-type inequality for approximation by linear positive operators

O. L. Vinogradov

St. Petersburg State University, Department of Mathematics and Mechanics
Abstract: In what follows, $C$ is the space of $2\pi$-periodic continuous real-valued functions with uniform norm, $\omega(f,h)=\sup_{|t|\le{h},x\in\mathbb R}|f(x+t)-f(x)|$ is the first modulus of continuity of function $f\in C$ with step $h$, $H_n$ is the set of trigonometric polynomials of order not greater than $n$, ${\mathscr L}_n^+$ is the set of linear positive operators $U_n:C\to H_n$ (i.e. such that $U_n(f)\ge0$ for every $f\ge0$), $L_2[0,1]$ is the space of square integrable on $[0,1]$ functions,
$$ \lambda_n(\gamma)=\inf_{U_n\in{\mathscr L}_n^+}\sup_{f\in C}\frac{\|f-U_n(f)\|}{\omega(f,\frac{\gamma\pi}{n+1}}, \qquad \lambda(\gamma)=\sup_{n\in\mathbb Z_+}\lambda_n(\gamma). $$

It is proved that $\lambda_n(\gamma)$ coincides with the smallest eigenvalue of some matrix of order $n+1$. The principal result of the paper is the following: for every $\gamma>0$ $\lambda(\gamma)$ doesn't outnumber and for $\gamma\in(0,1]$ is equal to the minimum of square functional
$$ (B_{\gamma}\varphi,\varphi)=\frac1\pi\int\limits_0^{\infty}\biggl(1+\biggl[\frac{t}{\gamma\pi}\biggr]\biggr)\Biggl|\int\limits_0^1\varphi(x)e^{itx}\,dx\Biggr|^2dt $$
on the unit sphere of $L_2[0,1]$. Then it is calculated that $\lambda(1)=1.312\ldots$
Received: 17.03.1997
English version:
Journal of Mathematical Sciences (New York), 2001, Volume 107, Issue 4, Pages 3987–4001
DOI: https://doi.org/10.1023/A:1012480314809
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: O. L. Vinogradov, “The sharp constant in Jackson-type inequality for approximation by linear positive operators”, Investigations on linear operators and function theory. Part 26, Zap. Nauchn. Sem. POMI, 255, POMI, St. Petersburg, 1998, 36–53; J. Math. Sci. (New York), 107:4 (2001), 3987–4001
Citation in format AMSBIB
\Bibitem{Vin98}
\by O.~L.~Vinogradov
\paper The sharp constant in Jackson-type inequality for approximation by linear positive operators
\inbook Investigations on linear operators and function theory. Part~26
\serial Zap. Nauchn. Sem. POMI
\yr 1998
\vol 255
\pages 36--53
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl931}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1692861}
\zmath{https://zbmath.org/?q=an:0981.41008}
\transl
\jour J. Math. Sci. (New York)
\yr 2001
\vol 107
\issue 4
\pages 3987--4001
\crossref{https://doi.org/10.1023/A:1012480314809}
Linking options:
  • https://www.mathnet.ru/eng/znsl931
  • https://www.mathnet.ru/eng/znsl/v255/p36
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:194
    Full-text PDF :83
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024