Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1998, Volume 254, Pages 207–234 (Mi znsl925)  

This article is cited in 4 scientific papers (total in 4 papers)

Constructive descriptions of classes of functions with the help of polynomial approximations. I

N. A. Shirokov

Saint-Petersburg State Electrotechnical University
Full-text PDF (311 kB) Citations (4)
Abstract: Proofs of results announced earlier are given. Theorem 1, which was announced in 1976, states that a function on a domain with bounded boundary rotation can be approximated in terms of a function $\rho_1^*(z)$, which modifies the classical distance $\rho_{1/n}(z)$ for the points whose neighborhoods contain more than one arc of the level curve of the complement of the domain. Theorem 2, which was announced in 1977, provides a domain with bounded boundary rotation and a function in the analytic Hölder $\alpha$-class on the domain which cannot be approximated with precision $p_{1/n}^\alpha(z)$ by polynomials.
Received: 12.03.1997
English version:
Journal of Mathematical Sciences (New York), 2001, Volume 105, Issue 4, Pages 2269–2291
DOI: https://doi.org/10.1023/A:1011393428151
Bibliographic databases:
UDC: 539.12
Language: Russian
Citation: N. A. Shirokov, “Constructive descriptions of classes of functions with the help of polynomial approximations. I”, Analytical theory of numbers and theory of functions. Part 15, Zap. Nauchn. Sem. POMI, 254, POMI, St. Petersburg, 1998, 207–234; J. Math. Sci. (New York), 105:4 (2001), 2269–2291
Citation in format AMSBIB
\Bibitem{Shi98}
\by N.~A.~Shirokov
\paper Constructive descriptions of classes of functions with the help of polynomial approximations.~I
\inbook Analytical theory of numbers and theory of functions. Part~15
\serial Zap. Nauchn. Sem. POMI
\yr 1998
\vol 254
\pages 207--234
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl925}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1691405}
\zmath{https://zbmath.org/?q=an:0982.30016}
\transl
\jour J. Math. Sci. (New York)
\yr 2001
\vol 105
\issue 4
\pages 2269--2291
\crossref{https://doi.org/10.1023/A:1011393428151}
Linking options:
  • https://www.mathnet.ru/eng/znsl925
  • https://www.mathnet.ru/eng/znsl/v254/p207
    Cycle of papers
    This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:213
    Full-text PDF :64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024