|
Zapiski Nauchnykh Seminarov POMI, 2003, Volume 302, Pages 135–148
(Mi znsl924)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
On the Distribution of Values of $L(1,f)$
O. M. Fomenko St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Let $S_k(N)^+$ be the set of newforms of weight $k$ for $\Gamma_0(N)$, and let $L(s,f)$, $f\in S_k(N)^+$, be the Hecke $L$-function of the form $f$. It is proved that for every integer $m\ge1$, $k=2$ and $N=p\to\infty$
$$
\sum_{f\in S_2(N)^+}\,L^m(1,f)=\frac{1}{12}B_m N+O(N^{1-\alpha}),
$$
where $B_m$ is a constant defined in the paper, and $\alpha=\alpha(m)>0$ is a certain constant. This result implies the existence of the distribution function of the sequence
$$
\{L(1,f),\,f\in S_2(N)^+\},\quad N=p\to\infty,
$$
and also yields an explicit expression for the corresponding characteristic function.
Received: 12.11.2003
Citation:
O. M. Fomenko, “On the Distribution of Values of $L(1,f)$”, Analytical theory of numbers and theory of functions. Part 19, Zap. Nauchn. Sem. POMI, 302, POMI, St. Petersburg, 2003, 135–148; J. Math. Sci. (N. Y.), 129:3 (2005), 3890–3897
Linking options:
https://www.mathnet.ru/eng/znsl924 https://www.mathnet.ru/eng/znsl/v302/p135
|
Statistics & downloads: |
Abstract page: | 235 | Full-text PDF : | 51 | References: | 55 |
|