Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2003, Volume 302, Pages 135–148 (Mi znsl924)  

This article is cited in 2 scientific papers (total in 2 papers)

On the Distribution of Values of $L(1,f)$

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (212 kB) Citations (2)
References:
Abstract: Let $S_k(N)^+$ be the set of newforms of weight $k$ for $\Gamma_0(N)$, and let $L(s,f)$, $f\in S_k(N)^+$, be the Hecke $L$-function of the form $f$. It is proved that for every integer $m\ge1$, $k=2$ and $N=p\to\infty$
$$ \sum_{f\in S_2(N)^+}\,L^m(1,f)=\frac{1}{12}B_m N+O(N^{1-\alpha}), $$
where $B_m$ is a constant defined in the paper, and $\alpha=\alpha(m)>0$ is a certain constant. This result implies the existence of the distribution function of the sequence
$$ \{L(1,f),\,f\in S_2(N)^+\},\quad N=p\to\infty, $$
and also yields an explicit expression for the corresponding characteristic function.
Received: 12.11.2003
English version:
Journal of Mathematical Sciences (New York), 2005, Volume 129, Issue 3, Pages 3890–3897
DOI: https://doi.org/10.1007/s10958-005-0325-6
Bibliographic databases:
UDC: 511.466+517.863
Language: Russian
Citation: O. M. Fomenko, “On the Distribution of Values of $L(1,f)$”, Analytical theory of numbers and theory of functions. Part 19, Zap. Nauchn. Sem. POMI, 302, POMI, St. Petersburg, 2003, 135–148; J. Math. Sci. (N. Y.), 129:3 (2005), 3890–3897
Citation in format AMSBIB
\Bibitem{Fom03}
\by O.~M.~Fomenko
\paper On the Distribution of Values of~$L(1,f)$
\inbook Analytical theory of numbers and theory of functions. Part~19
\serial Zap. Nauchn. Sem. POMI
\yr 2003
\vol 302
\pages 135--148
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl924}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2023037}
\zmath{https://zbmath.org/?q=an:1140.11333}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2005
\vol 129
\issue 3
\pages 3890--3897
\crossref{https://doi.org/10.1007/s10958-005-0325-6}
Linking options:
  • https://www.mathnet.ru/eng/znsl924
  • https://www.mathnet.ru/eng/znsl/v302/p135
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:235
    Full-text PDF :51
    References:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024