Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1998, Volume 254, Pages 192–206 (Mi znsl919)  

This article is cited in 4 scientific papers (total in 4 papers)

On the mean number of solutions of certain congruences

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (227 kB) Citations (4)
Abstract: Let $f(X)$ be an irreducible polynomial of degree $m\ge3$ with integer coefficients and unit leading coefficient, and let $\rho(n)$ be the number of solutions of the congruence
$$ f(x)\equiv 0\pmod n; \quad 0\le X<n. $$
For certain classes of polynomials (in particular, for Abelian polynomials), the Dirichlet series
$$ \sum_{n-1}^{\infty}\frac{p(n)}{n^s} \quad (\operatorname{Re}s>1) $$
has an analytic continuation to the left of the line $\operatorname{Re}s=1$. This allows us to obtain anasymptotic formula for $\sum_{n\le1}\rho(n)$ as $x\to\infty$, where the error term is better than that obtained on the basis of the modern theory of multiplicative functions.
Received: 23.10.1998
English version:
Journal of Mathematical Sciences (New York), 2001, Volume 105, Issue 4, Pages 2257–2268
DOI: https://doi.org/10.1023/A:1011341411313
Bibliographic databases:
UDC: 511.466+517.863
Language: Russian
Citation: O. M. Fomenko, “On the mean number of solutions of certain congruences”, Analytical theory of numbers and theory of functions. Part 15, Zap. Nauchn. Sem. POMI, 254, POMI, St. Petersburg, 1998, 192–206; J. Math. Sci. (New York), 105:4 (2001), 2257–2268
Citation in format AMSBIB
\Bibitem{Fom98}
\by O.~M.~Fomenko
\paper On the mean number of solutions of certain congruences
\inbook Analytical theory of numbers and theory of functions. Part~15
\serial Zap. Nauchn. Sem. POMI
\yr 1998
\vol 254
\pages 192--206
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl919}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1691404}
\zmath{https://zbmath.org/?q=an:0986.11067}
\transl
\jour J. Math. Sci. (New York)
\yr 2001
\vol 105
\issue 4
\pages 2257--2268
\crossref{https://doi.org/10.1023/A:1011341411313}
Linking options:
  • https://www.mathnet.ru/eng/znsl919
  • https://www.mathnet.ru/eng/znsl/v254/p192
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:205
    Full-text PDF :61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024