Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2003, Volume 302, Pages 52–67 (Mi znsl918)  

This article is cited in 17 scientific papers (total in 17 papers)

The method of extremal metric in extremal decomposition problems with free parameters

G. V. Kuz'mina

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
References:
Abstract: Let $a_1,\dots,a_n$ be a system of distinct points on the $z$-sphere $\overline{\mathbb C}$, and let $\mathcal D$ be a system of all non-overlapping simply-connected domains $D_1,\dots,D_n$ on $\overline{\mathbb C}$ such that $a_k\in D_k$, $k=1,\dots, n$. Let $M(D_k, a_k)$ be the reduced module of the domain Dk with respect to the point $a_k\in D_k$. In the present paper, we solve some problems concerning the maximum of weighted sums of the reduced modules $M(D_k, a_k)$ in certain families of systems of domains $\{D_k\}$ described above, where the systems of points $\{a_k\}$ satisfy prescribed symmetry conditions. In each case, the proof is based on an explicit construction of an admissible metric of the module problem, which is equivalent to the extremal problem under consideration, from known extremal metrics of simpler module problems.
Received: 17.11.2003
English version:
Journal of Mathematical Sciences (New York), 2005, Volume 129, Issue 3, Pages 3843–3851
DOI: https://doi.org/10.1007/s10958-005-0320-y
Bibliographic databases:
UDC: 517.54
Language: Russian
Citation: G. V. Kuz'mina, “The method of extremal metric in extremal decomposition problems with free parameters”, Analytical theory of numbers and theory of functions. Part 19, Zap. Nauchn. Sem. POMI, 302, POMI, St. Petersburg, 2003, 52–67; J. Math. Sci. (N. Y.), 129:3 (2005), 3843–3851
Citation in format AMSBIB
\Bibitem{Kuz03}
\by G.~V.~Kuz'mina
\paper The method of extremal metric in extremal decomposition problems with free parameters
\inbook Analytical theory of numbers and theory of functions. Part~19
\serial Zap. Nauchn. Sem. POMI
\yr 2003
\vol 302
\pages 52--67
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl918}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2023032}
\zmath{https://zbmath.org/?q=an:1162.30011}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2005
\vol 129
\issue 3
\pages 3843--3851
\crossref{https://doi.org/10.1007/s10958-005-0320-y}
Linking options:
  • https://www.mathnet.ru/eng/znsl918
  • https://www.mathnet.ru/eng/znsl/v302/p52
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:352
    Full-text PDF :98
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024