|
Zapiski Nauchnykh Seminarov POMI, 2003, Volume 302, Pages 5–17
(Mi znsl914)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
The region of values of the system $\{f(z_1),f(z_2),f(z_3)\}$ on the class of typically real functions
E. G. Goluzina St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
The paper determines the region of values of the system occurring in the title on the class $T$ of functions $f(z)=z+\dotsb$ regular in the unit disk and satisfying the condition
$\operatorname{Im}f(z)\cdot\operatorname{Im}z>0$ for $\operatorname{Im}z\ne0$.
Received: 03.10.2003
Citation:
E. G. Goluzina, “The region of values of the system $\{f(z_1),f(z_2),f(z_3)\}$ on the class of typically real functions”, Analytical theory of numbers and theory of functions. Part 19, Zap. Nauchn. Sem. POMI, 302, POMI, St. Petersburg, 2003, 5–17; J. Math. Sci. (N. Y.), 129:3 (2003), 3815–3822
Linking options:
https://www.mathnet.ru/eng/znsl914 https://www.mathnet.ru/eng/znsl/v302/p5
|
Statistics & downloads: |
Abstract page: | 341 | Full-text PDF : | 70 | References: | 82 |
|