|
Zapiski Nauchnykh Seminarov POMI, 2003, Volume 303, Pages 272–278
(Mi znsl911)
|
|
|
|
Zero-sets for $H^\infty$-functions on hyperplanes in $\mathbb B^n$
N. A. Shirokov Saint-Petersburg State Electrotechnical University
Abstract:
Let $\mathbb B^n$ be the unit ball in $\mathbb C^n$, $n\ge2$. We put $T_a=\{z\in\mathbb B^n:(z,a)=|a|^2\}$ for $a\in\mathbb B^n$ and $T_A=\bigcup\limits_{a\in A}T_a$ for a discrete in $\mathbb B^n$ set $A$. We find a sharp necessary condition for a set $A$ to be a part of the zero-set for a function in $H^\infty(\mathbb B^n)$.
Received: 25.09.2003
Citation:
N. A. Shirokov, “Zero-sets for $H^\infty$-functions on hyperplanes in $\mathbb B^n$”, Investigations on linear operators and function theory. Part 31, Zap. Nauchn. Sem. POMI, 303, POMI, St. Petersburg, 2003, 272–278; J. Math. Sci. (N. Y.), 129:4 (2005), 4083–4086
Linking options:
https://www.mathnet.ru/eng/znsl911 https://www.mathnet.ru/eng/znsl/v303/p272
|
Statistics & downloads: |
Abstract page: | 220 | Full-text PDF : | 49 | References: | 54 |
|