Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2003, Volume 303, Pages 169–202 (Mi znsl907)  

This article is cited in 6 scientific papers (total in 6 papers)

Free interpolation in the spaces of analytic functions with derivative of order $s$ in a Hardy space

A. M. Kotochigov

Saint-Petersburg State Electrotechnical University
Full-text PDF (324 kB) Citations (6)
References:
Abstract: We consider the problem of free interpolation for the spaces of analytic functions with derivative of order $s$ in the Hardy space $H^p$. For the sets that satisfy the Stolz condition, we obtain a condition necessary for interpolation: if $1\leq p<\infty$, then the set must be a union of $s$ sparse sets. For $p=\infty$, we obtain a necessary and sufficient condition for interpolation: the set must be a union of $s+1$ sparse sets. In this case, we construct an extension operator.
Received: 10.11.2003
English version:
Journal of Mathematical Sciences (New York), 2005, Volume 129, Issue 4, Pages 4022–4039
DOI: https://doi.org/10.1007/s10958-005-0339-0
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: A. M. Kotochigov, “Free interpolation in the spaces of analytic functions with derivative of order $s$ in a Hardy space”, Investigations on linear operators and function theory. Part 31, Zap. Nauchn. Sem. POMI, 303, POMI, St. Petersburg, 2003, 169–202; J. Math. Sci. (N. Y.), 129:4 (2005), 4022–4039
Citation in format AMSBIB
\Bibitem{Kot03}
\by A.~M.~Kotochigov
\paper Free interpolation in the spaces of analytic functions with derivative of order~$s$ in a~Hardy space
\inbook Investigations on linear operators and function theory. Part~31
\serial Zap. Nauchn. Sem. POMI
\yr 2003
\vol 303
\pages 169--202
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl907}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2037538}
\zmath{https://zbmath.org/?q=an:1151.30339}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2005
\vol 129
\issue 4
\pages 4022--4039
\crossref{https://doi.org/10.1007/s10958-005-0339-0}
Linking options:
  • https://www.mathnet.ru/eng/znsl907
  • https://www.mathnet.ru/eng/znsl/v303/p169
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:228
    Full-text PDF :76
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024