Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2003, Volume 304, Pages 99–120 (Mi znsl879)  

This article is cited in 1 scientific paper (total in 1 paper)

$S_{k,\exp}$ does not prove $\mathrm{NP}=\mathrm{co}-\mathrm{NP}$ uniformly

Ch. Pollett

Department of Computer Science San Jose State University
Full-text PDF (288 kB) Citations (1)
References:
Abstract: A notion of a uniform sequent calculus proof is given. It is then shown that a strengthening, $S_{k,\exp}$, of the well-studied bounded arithmetic system $S_k$ of Buss does not prove $\mathrm{NP}=\mathrm{co}-\mathrm{NP}$ with a uniform proof. A slightly stronger result that $S_{k,\exp}$ cannot prove $\widehat\Sigma_{1,k'}^b=\widehat\Pi_{1,k'}^b$ uniformly for $2\leq k'\leq k$ is also established. A variation on the technique used is then applied to show that $S_{k,\exp}$ is unable to prove Davis–Putnam–Robinson–Matiyasevich theorem. This result is also without any uniformity conditions. Generalization of both these results to higher levels of the Grzegorczyck Hierarchy are then presented.
Received: 03.05.2003
English version:
Journal of Mathematical Sciences (New York), 2005, Volume 130, Issue 2, Pages 4607–4619
DOI: https://doi.org/10.1007/s10958-005-0355-0
Bibliographic databases:
UDC: 517.11
Language: English
Citation: Ch. Pollett, “$S_{k,\exp}$ does not prove $\mathrm{NP}=\mathrm{co}-\mathrm{NP}$ uniformly”, Computational complexity theory. Part VIII, Zap. Nauchn. Sem. POMI, 304, POMI, St. Petersburg, 2003, 99–120; J. Math. Sci. (N. Y.), 130:2 (2005), 4607–4619
Citation in format AMSBIB
\Bibitem{Pol03}
\by Ch.~Pollett
\paper $S_{k,\exp}$ does not prove $\mathrm{NP}=\mathrm{co}-\mathrm{NP}$ uniformly
\inbook Computational complexity theory. Part~VIII
\serial Zap. Nauchn. Sem. POMI
\yr 2003
\vol 304
\pages 99--120
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl879}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2054750}
\zmath{https://zbmath.org/?q=an:1145.03337}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2005
\vol 130
\issue 2
\pages 4607--4619
\crossref{https://doi.org/10.1007/s10958-005-0355-0}
Linking options:
  • https://www.mathnet.ru/eng/znsl879
  • https://www.mathnet.ru/eng/znsl/v304/p99
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:169
    Full-text PDF :40
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024