Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2003, Volume 304, Pages 19–74 (Mi znsl877)  

This article is cited in 2 scientific papers (total in 2 papers)

Formal axiomatic theories on the base of three-valued logic

I. D. Zaslavsky

Institute for Informatics and Automation Problems of National Academy of Science of the Republic of Armenia
Full-text PDF (426 kB) Citations (2)
References:
Abstract: Formal axiomatic theories on the base of J. Lukasiewicz's three-valued logic are considered. Main notions connected with these theories are introduced, for example, the notion of a Luk-model (i.e., model of a theory in terms of J. Lukasiewicz's logic), of a Luk-consistent theory, Luk-complete theory. Logical calculi describing such theories are defined; analogues of the classical theorems on compactness and completeness are proved. Arithmetical theories based on J. Lukasewicz's logic and on its constructive (intuitionistic) variant are investigated; the theorem on effective Luk-incompleteness for a large class of arithmetical systems is proved which is a three-valued analogue of K. Goedel's famous theorem on the incompleteness of formal theories. Three-valued analogues of M. Presburger's arithmetical system are defined; it is proved that they are Luk-complete but not complete in the classical sense.
Received: 20.12.2002
English version:
Journal of Mathematical Sciences (New York), 2005, Volume 130, Issue 2, Pages 4578–4597
DOI: https://doi.org/10.1007/s10958-005-0353-2
Bibliographic databases:
UDC: 510.644
Language: Russian
Citation: I. D. Zaslavsky, “Formal axiomatic theories on the base of three-valued logic”, Computational complexity theory. Part VIII, Zap. Nauchn. Sem. POMI, 304, POMI, St. Petersburg, 2003, 19–74; J. Math. Sci. (N. Y.), 130:2 (2005), 4578–4597
Citation in format AMSBIB
\Bibitem{Zas03}
\by I.~D.~Zaslavsky
\paper Formal axiomatic theories on the base of three-valued logic
\inbook Computational complexity theory. Part~VIII
\serial Zap. Nauchn. Sem. POMI
\yr 2003
\vol 304
\pages 19--74
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl877}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2054748}
\zmath{https://zbmath.org/?q=an:1145.03014}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2005
\vol 130
\issue 2
\pages 4578--4597
\crossref{https://doi.org/10.1007/s10958-005-0353-2}
Linking options:
  • https://www.mathnet.ru/eng/znsl877
  • https://www.mathnet.ru/eng/znsl/v304/p19
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:478
    Full-text PDF :189
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024