Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2004, Volume 307, Pages 120–140 (Mi znsl842)  

This article is cited in 1 scientific paper (total in 1 paper)

Finite factor representations of 2-step nilpotent groups, and orbit theory

K. P. Kokhas'

Saint-Petersburg State University
Full-text PDF (270 kB) Citations (1)
References:
Abstract: In this paper we describe factor representations of discrete 2-step nilpotent groups with 2-divisible center. We show that some standard theorems of the orbit theory are valid in the case of these groups. For countable 2-step nilpotent groups, we explain how to construct a factor representation starting from the orbit of the “coadjoint representation.” We also prove that every factor representation (more precisely, every trace) can be obtained by this construction, and prove a theorem on the decomposition of the factor representation restricted to a subgroup.
Received: 18.03.2004
English version:
Journal of Mathematical Sciences (New York), 2005, Volume 131, Issue 2, Pages 5508–5519
DOI: https://doi.org/10.1007/s10958-005-0423-5
Bibliographic databases:
UDC: 512.54
Language: Russian
Citation: K. P. Kokhas', “Finite factor representations of 2-step nilpotent groups, and orbit theory”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part X, Zap. Nauchn. Sem. POMI, 307, POMI, St. Petersburg, 2004, 120–140; J. Math. Sci. (N. Y.), 131:2 (2005), 5508–5519
Citation in format AMSBIB
\Bibitem{Kok04}
\by K.~P.~Kokhas'
\paper Finite factor representations of 2-step nilpotent groups, and orbit theory
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~X
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 307
\pages 120--140
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl842}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2050690}
\zmath{https://zbmath.org/?q=an:1100.22006}
\elib{https://elibrary.ru/item.asp?id=9127650}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2005
\vol 131
\issue 2
\pages 5508--5519
\crossref{https://doi.org/10.1007/s10958-005-0423-5}
Linking options:
  • https://www.mathnet.ru/eng/znsl842
  • https://www.mathnet.ru/eng/znsl/v307/p120
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:251
    Full-text PDF :78
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024