Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2004, Volume 308, Pages 182–196 (Mi znsl834)  

This article is cited in 2 scientific papers (total in 2 papers)

The numerical study of the properties of quasilocal plane waves of the modal type in the case of a thin low-velocity layer that is in contact with an elastic half-space

Yu. A. Surkova, V. V. Reshetnikovb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Saint-Petersburg State University
Full-text PDF (427 kB) Citations (2)
References:
Abstract: The numerical study of the properties of quasilocal plane waves of the modal type propagating deep into a medium is carried out by the example of the model of a low-velocity elastic layer in the case of the rigid contact with an underlying half-space. It is established that the genesis of these waves is closely connected with the singular complex roots of the dispersion equation of the problem. Eighteen variants of the model differing by the relative parameters of the problem that have a physical sence are considered. For every variant the seismograms of the modal and body waves are computed and the comparison of them by intensity is carried out.
Received: 26.01.2004
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 132, Issue 1, Pages 103–112
DOI: https://doi.org/10.1007/s10958-005-0479-2
Bibliographic databases:
UDC: 550.834
Language: Russian
Citation: Yu. A. Surkov, V. V. Reshetnikov, “The numerical study of the properties of quasilocal plane waves of the modal type in the case of a thin low-velocity layer that is in contact with an elastic half-space”, Mathematical problems in the theory of wave propagation. Part 33, Zap. Nauchn. Sem. POMI, 308, POMI, St. Petersburg, 2004, 182–196; J. Math. Sci. (N. Y.), 132:1 (2006), 103–112
Citation in format AMSBIB
\Bibitem{SurRes04}
\by Yu.~A.~Surkov, V.~V.~Reshetnikov
\paper The numerical study of the properties of quasilocal plane waves of the modal type in the case of a~thin low-velocity layer that is in contact with an elastic half-space
\inbook Mathematical problems in the theory of wave propagation. Part~33
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 308
\pages 182--196
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl834}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2092618}
\zmath{https://zbmath.org/?q=an:1130.74027}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 132
\issue 1
\pages 103--112
\crossref{https://doi.org/10.1007/s10958-005-0479-2}
Linking options:
  • https://www.mathnet.ru/eng/znsl834
  • https://www.mathnet.ru/eng/znsl/v308/p182
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:279
    Full-text PDF :59
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024