Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2004, Volume 309, Pages 84–126 (Mi znsl819)  

This article is cited in 1 scientific paper (total in 1 paper)

Solution of the problem of optimal diagonal scaling for quasireal Hermitian positive-definite $3\times3$ matrices

L. Yu. Kolotilina

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (325 kB) Citations (1)
References:
Abstract: The paper completely solves the problem of optimal diagonal scaling for quasireal Hermitian positive-definite matrices of order 3. In particular, in the most interesting irreducible case, it is demonstrated that for any matrix $C$ from the class considered there is a uniquely determined optimally scaled matrix $D^*_0CD_0$ of one of the four canonical types, and formulas for the entries of the diagonal matrix $D_0$ are presented as well as formulas for the eigenvalues and eigenvectors of $D^*_0CD_0$ and for the optimal condition number of $C$, which is equal to $k(D^*_0CD_0)$. The optimality of the Jacobi scaling is analyzed.
Received: 05.05.2004
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 132, Issue 2, Pages 190–213
DOI: https://doi.org/10.1007/s10958-005-0488-1
Bibliographic databases:
UDC: 512.643
Language: Russian
Citation: L. Yu. Kolotilina, “Solution of the problem of optimal diagonal scaling for quasireal Hermitian positive-definite $3\times3$ matrices”, Computational methods and algorithms. Part XVII, Zap. Nauchn. Sem. POMI, 309, POMI, St. Petersburg, 2004, 84–126; J. Math. Sci. (N. Y.), 132:2 (2006), 190–213
Citation in format AMSBIB
\Bibitem{Kol04}
\by L.~Yu.~Kolotilina
\paper Solution of the problem of optimal diagonal scaling for quasireal Hermitian positive-definite
$3\times3$ matrices
\inbook Computational methods and algorithms. Part~XVII
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 309
\pages 84--126
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl819}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2091593}
\zmath{https://zbmath.org/?q=an:1073.15505}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 132
\issue 2
\pages 190--213
\crossref{https://doi.org/10.1007/s10958-005-0488-1}
Linking options:
  • https://www.mathnet.ru/eng/znsl819
  • https://www.mathnet.ru/eng/znsl/v309/p84
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:265
    Full-text PDF :52
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024