Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2004, Volume 310, Pages 19–48 (Mi znsl804)  

This article is cited in 1 scientific paper (total in 1 paper)

New a priori estimates for $q$-nonlinear elliptic systems with strong nonlinearities in the gradient, $1<q<2$

A. A. Arkhipova

Saint-Petersburg State University
Full-text PDF (305 kB) Citations (1)
References:
Abstract: We consider $q$-nonlinear nondiagonal elliptic systems, $1<q<2$, with strong nonlinear terms in the gradient. Under a smallness condition on the gradient of a solution in the Morry space $L^{q,n-q}$, we estimate $L^p$-norm of the gradient, $p>q$, and the Hölder norm of the solution for the case $n=2$. An abstract theorem on “quasireverse Hölder inequalities” proved by the author earlier is essencially used.
Received: 10.02.2004
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 132, Issue 3, Pages 255–273
DOI: https://doi.org/10.1007/s10958-005-0495-2
Bibliographic databases:
UDC: 517
Language: English
Citation: A. A. Arkhipova, “New a priori estimates for $q$-nonlinear elliptic systems with strong nonlinearities in the gradient, $1<q<2$”, Boundary-value problems of mathematical physics and related problems of function theory. Part 35, Zap. Nauchn. Sem. POMI, 310, POMI, St. Petersburg, 2004, 19–48; J. Math. Sci. (N. Y.), 132:3 (2006), 255–273
Citation in format AMSBIB
\Bibitem{Ark04}
\by A.~A.~Arkhipova
\paper New a~priori estimates for $q$-nonlinear elliptic systems with strong nonlinearities in the gradient, $1<q<2$
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~35
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 310
\pages 19--48
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl804}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2120183}
\zmath{https://zbmath.org/?q=an:1102.35037}
\elib{https://elibrary.ru/item.asp?id=9128685}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 132
\issue 3
\pages 255--273
\crossref{https://doi.org/10.1007/s10958-005-0495-2}
Linking options:
  • https://www.mathnet.ru/eng/znsl804
  • https://www.mathnet.ru/eng/znsl/v310/p19
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:199
    Full-text PDF :68
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024