Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2004, Volume 311, Pages 179–189 (Mi znsl795)  

Asymptotic behaviour of maximum of sums of i.i.d. random variables along monotone blocks

A. I. Martikainen

Saint-Petersburg State University
References:
Abstract: Let $\{ X_i,Y_i\}_{i=1,2,\dots }$ be an i.i.d. sequence of bivariate random vectors with $P(Y_1=y)=0$ for all $y$. Put $M_n(j)=\max _{0\le k\le n-j} (X_{k+1}+\dots X_{k+j})I_{k,j},$ where $I_{k,k+j}=I\{Y_{k+1}<\dots<Y_{k+j}\}$ denotes the indicator function for the event in the brackets, $1\le j\le n$. Let $L_n$ be the largest $l\le n$, for which $I_{k,k+l}=1$ for some $k=0,1,\dots,n-l$. The strong law of large numbers for “the maximal gain over the longest increasing runs”, i.e. for $M_n(L_n)$ has been recently derived for the case of $X_1$ with a finite moment of the order $3+\varepsilon,\varepsilon>0$. Assuming that $X_1$ has a finite mean we prove for any $a=0,1,\dots$, that the s.l.l.n. for $M_{(L_n-a)}$ is equivalent to ${\mathbf E}X_1^{3+a}I\{X_1>0\}<\infty$. We derive also some new results for the a.s. asymptotics of $L_n$.
Received: 25.05.2004
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 133, Issue 3, Pages 1308–1313
DOI: https://doi.org/10.1007/s10958-006-0040-y
Bibliographic databases:
UDC: 519.2
Language: Russian
Citation: A. I. Martikainen, “Asymptotic behaviour of maximum of sums of i.i.d. random variables along monotone blocks”, Probability and statistics. Part 7, Zap. Nauchn. Sem. POMI, 311, POMI, St. Petersburg, 2004, 179–189; J. Math. Sci. (N. Y.), 133:3 (2006), 1308–1313
Citation in format AMSBIB
\Bibitem{Mar04}
\by A.~I.~Martikainen
\paper Asymptotic behaviour of maximum of sums of i.i.d. random variables along monotone blocks
\inbook Probability and statistics. Part~7
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 311
\pages 179--189
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl795}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2092207}
\zmath{https://zbmath.org/?q=an:1074.60043}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 133
\issue 3
\pages 1308--1313
\crossref{https://doi.org/10.1007/s10958-006-0040-y}
Linking options:
  • https://www.mathnet.ru/eng/znsl795
  • https://www.mathnet.ru/eng/znsl/v311/p179
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:184
    Full-text PDF :70
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024