Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2004, Volume 311, Pages 124–132 (Mi znsl791)  

This article is cited in 3 scientific papers (total in 3 papers)

A note on the martingale approximation method in proving the central limit theorem for stationary random sequences

M. I. Gordin

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (176 kB) Citations (3)
References:
Abstract: Under appropriate assumptions the martingale approximation method allows to reduce the study of the asymptotic behavior of sums of random variables forming a stationary random sequence to the analogous problem about the sums of stationary martingale differences. In his early paper on the martingale method the author proposed certain sufficient conditions for the central limit theorem to hold. It is shown in the present note that these conditions, at least in one particular case, can be essentially relaxed. In the context of the central limit theorem for Markov chains an analogous observation was made in a recent paper by H. Holzmann and the author.
Received: 06.07.2004
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 133, Issue 3, Pages 1277–1281
DOI: https://doi.org/10.1007/s10958-006-0036-7
Bibliographic databases:
UDC: 519.2
Language: Russian
Citation: M. I. Gordin, “A note on the martingale approximation method in proving the central limit theorem for stationary random sequences”, Probability and statistics. Part 7, Zap. Nauchn. Sem. POMI, 311, POMI, St. Petersburg, 2004, 124–132; J. Math. Sci. (N. Y.), 133:3 (2006), 1277–1281
Citation in format AMSBIB
\Bibitem{Gor04}
\by M.~I.~Gordin
\paper A~note on the martingale approximation method in proving the central limit theorem for stationary random sequences
\inbook Probability and statistics. Part~7
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 311
\pages 124--132
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl791}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2092203}
\zmath{https://zbmath.org/?q=an:1079.60507}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 133
\issue 3
\pages 1277--1281
\crossref{https://doi.org/10.1007/s10958-006-0036-7}
Linking options:
  • https://www.mathnet.ru/eng/znsl791
  • https://www.mathnet.ru/eng/znsl/v311/p124
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:389
    Full-text PDF :159
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024