|
Zapiski Nauchnykh Seminarov POMI, 2004, Volume 311, Pages 51–78
(Mi znsl788)
|
|
|
|
This article is cited in 7 scientific papers (total in 7 papers)
On some exponential integral functionals of BM($\mu$) and BES(3)
A. N. Borodina, P. Salminenb a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Matematiska Institutionen
Abstract:
In this paper we derive the Laplace transforms of the integral functionals
$$
\int_0^\infty
\left(p\left(\exp(B^{(\mu)}_t)+1\right)^{-1}+q\left(\exp(B^{(\mu)}_t)+1\right)^{-2}\right)\,dt,
$$
and
$$
\int_0^\infty
\left(p\left(\exp(R^{(3)}_t)-1\right)^{-1}+q\left(\exp(R^{(3)}_t)-1\right)^{-2}\right)\,dt,
$$
where $p$ and $q$ are real numbers, $\{B^{(\mu)}_t:\ t\geqslant0\}$
is a Brownian motion with drift $\mu>0$, BM($\mu$), and $\{R^{(3)}_t\:t\geq 0\}$ is a $3$-dimensional Bessel process, BES(3). The transforms are given in terms of Gauss' hypergeometric functions and it is seen that the results are closely related to some ones for functionals of Jacobi diffusions. This work generalizes and
completes some results of Donati–Martin and Yor [4] and Salminen and Yor [11].
Received: 02.07.2004
Citation:
A. N. Borodin, P. Salminen, “On some exponential integral functionals of BM($\mu$) and BES(3)”, Probability and statistics. Part 7, Zap. Nauchn. Sem. POMI, 311, POMI, St. Petersburg, 2004, 51–78; J. Math. Sci. (N. Y.), 133:3 (2006), 1231–1248
Linking options:
https://www.mathnet.ru/eng/znsl788 https://www.mathnet.ru/eng/znsl/v311/p51
|
Statistics & downloads: |
Abstract page: | 355 | Full-text PDF : | 111 | References: | 42 |
|