Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2004, Volume 312, Pages 188–214 (Mi znsl780)  

This article is cited in 1 scientific paper (total in 1 paper)

Equilibrium analysis in Kantorovich spaces

V. M. Marakulin

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (329 kB) Citations (1)
References:
Abstract: The paper presents a survey of new results in general equilibrium theory with linear vector lattice commodity space (Kantorovich space). The importance of order structures and the Riesz–Kantorovich formula is clarified. The main novelty of the paper is new characterizations of fuzzy core elements in an exchange economy. Then these characterizations are applied to prove a new quasi-equilibrium existence theorem for linear vector lattice economy. This theorem, based on E-properness of preferences by Podczeck–Florenzano–Marakulin, develops the Florenzano–Marakulin approach and generalizes previous Tourky's results.
Received: 17.05.2004
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 133, Issue 4, Pages 1477–1490
DOI: https://doi.org/10.1007/s10958-006-0063-4
Bibliographic databases:
UDC: 519.86
Language: Russian
Citation: V. M. Marakulin, “Equilibrium analysis in Kantorovich spaces”, Representation theory, dynamical systems. Part XI, Special issue, Zap. Nauchn. Sem. POMI, 312, POMI, St. Petersburg, 2004, 188–214; J. Math. Sci. (N. Y.), 133:4 (2006), 1477–1490
Citation in format AMSBIB
\Bibitem{Mar04}
\by V.~M.~Marakulin
\paper Equilibrium analysis in Kantorovich spaces
\inbook Representation theory, dynamical systems. Part~XI
\bookinfo Special issue
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 312
\pages 188--214
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl780}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2117890}
\zmath{https://zbmath.org/?q=an:1139.91021}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 133
\issue 4
\pages 1477--1490
\crossref{https://doi.org/10.1007/s10958-006-0063-4}
Linking options:
  • https://www.mathnet.ru/eng/znsl780
  • https://www.mathnet.ru/eng/znsl/v312/p188
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:204
    Full-text PDF :69
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024