Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2004, Volume 312, Pages 69–85 (Mi znsl773)  

This article is cited in 64 scientific papers (total in 65 papers)

The Kantorovich metric: initial history and little-known applications

A. M. Vershik

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
References:
Abstract: We remind of the history of the transportation metric (Kantorovich metric) and the Monge–Kantorovich problem. We describe several little-known applications: the first one concerns the theory of decreasing sequences of partitions (tower of measures and iterated metric), the second one concerns Ornstein's theory of Bernoulli automorphisms ($\bar d$-metric), and the third one is the formulation of the strong Monge–Kantorovich problem in terms of matrix distributions.
Received: 25.08.2004
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 133, Issue 4, Pages 1410–1417
DOI: https://doi.org/10.1007/s10958-006-0056-3
Bibliographic databases:
UDC: 517.987
Language: Russian
Citation: A. M. Vershik, “The Kantorovich metric: initial history and little-known applications”, Representation theory, dynamical systems. Part XI, Special issue, Zap. Nauchn. Sem. POMI, 312, POMI, St. Petersburg, 2004, 69–85; J. Math. Sci. (N. Y.), 133:4 (2006), 1410–1417
Citation in format AMSBIB
\Bibitem{Ver04}
\by A.~M.~Vershik
\paper The Kantorovich metric: initial history and little-known applications
\inbook Representation theory, dynamical systems. Part~XI
\bookinfo Special issue
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 312
\pages 69--85
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl773}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2117883}
\zmath{https://zbmath.org/?q=an:1090.28009}
\elib{https://elibrary.ru/item.asp?id=9129081}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 133
\issue 4
\pages 1410--1417
\crossref{https://doi.org/10.1007/s10958-006-0056-3}
\elib{https://elibrary.ru/item.asp?id=13522843}
Linking options:
  • https://www.mathnet.ru/eng/znsl773
  • https://www.mathnet.ru/eng/znsl/v312/p69
  • This publication is cited in the following 65 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:1119
    Full-text PDF :519
    References:72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024