Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2004, Volume 314, Pages 257–271 (Mi znsl760)  

This article is cited in 2 scientific papers (total in 2 papers)

A converse approximation theorem on subsets of elliptic curves

A. V. Khaustov, N. A. Shirokov

Saint-Petersburg State University
Full-text PDF (204 kB) Citations (2)
References:
Abstract: Functions defined on closed subsets of elliptic curves $G\subset E=\{(\zeta,w)\in\mathbb C^2:w^2=4\zeta^3-g_2\zeta-g_3\}$ are considered. The following converse theorem of approximation is established. Consider a function $f\colon G\to\mathbb C$. Assume that there is a sequence of polynomials $P_n(\zeta, w)$, in two variables, $\deg{P_n}\leqslant n$, such that the following inequalities are valid:
$$ |f(\zeta,w)-P_n(\zeta,w)|\leqslant c(f,G)\delta^\alpha_{1/n}(\zeta,w)\quad\text{при}\quad(\zeta,w)\in\partial G, $$
where $0<\alpha<1$. Then the function $f$ necessarily belongs to the class $H^\alpha(G)$. The direct approximation theorem was proved in the previous paper by the authors. Thus, a constructive description of the class $H^\alpha(G)$ is obtained.
Received: 26.04.2004
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 133, Issue 6, Pages 1756–1764
DOI: https://doi.org/10.1007/s10958-006-0087-9
Bibliographic databases:
UDC: 539.12
Language: Russian
Citation: A. V. Khaustov, N. A. Shirokov, “A converse approximation theorem on subsets of elliptic curves”, Analytical theory of numbers and theory of functions. Part 20, Zap. Nauchn. Sem. POMI, 314, POMI, St. Petersburg, 2004, 257–271; J. Math. Sci. (N. Y.), 133:6 (2006), 1756–1764
Citation in format AMSBIB
\Bibitem{KhaShi04}
\by A.~V.~Khaustov, N.~A.~Shirokov
\paper A~converse approximation theorem on subsets of elliptic curves
\inbook Analytical theory of numbers and theory of functions. Part~20
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 314
\pages 257--271
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl760}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2119745}
\zmath{https://zbmath.org/?q=an:1094.30043}
\elib{https://elibrary.ru/item.asp?id=9129790}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 133
\issue 6
\pages 1756--1764
\crossref{https://doi.org/10.1007/s10958-006-0087-9}
\elib{https://elibrary.ru/item.asp?id=13524637}
Linking options:
  • https://www.mathnet.ru/eng/znsl760
  • https://www.mathnet.ru/eng/znsl/v314/p257
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:255
    Full-text PDF :60
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024