Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2004, Volume 314, Pages 247–256 (Mi znsl759)  

This article is cited in 24 scientific papers (total in 24 papers)

Identities involving the coefficients of automorphic $L$-functions

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
References:
Abstract: Let $f(z)$ be a holomorphic Hecke eigenform of weight $k$ with respect to $SL(2,\mathbb Z)$ and let
$$ L(s,\operatorname{sym}^2f)=\sum\limits^{\infty}_{n=1}c_n n^{-s},\quad \operatorname{Re}s>1, $$
denote the symmetric square $L$-function of $f$. A Voronoi type formula for
$$ C(x)=\sum\limits_{n\leqslant x}c_n. $$
and the relation
$$ C(x)=\Omega_{\pm}(x^{1/3}). $$
are proved. Heuristic approaches to estimation of exponential sums arising in this connection are considered.
Received: 06.09.2004
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 133, Issue 6, Pages 1749–1755
DOI: https://doi.org/10.1007/s10958-006-0086-x
Bibliographic databases:
UDC: 511.466+517.863
Language: Russian
Citation: O. M. Fomenko, “Identities involving the coefficients of automorphic $L$-functions”, Analytical theory of numbers and theory of functions. Part 20, Zap. Nauchn. Sem. POMI, 314, POMI, St. Petersburg, 2004, 247–256; J. Math. Sci. (N. Y.), 133:6 (2006), 1749–1755
Citation in format AMSBIB
\Bibitem{Fom04}
\by O.~M.~Fomenko
\paper Identities involving the coefficients of automorphic $L$-functions
\inbook Analytical theory of numbers and theory of functions. Part~20
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 314
\pages 247--256
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl759}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2119744}
\zmath{https://zbmath.org/?q=an:1094.11018}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 133
\issue 6
\pages 1749--1755
\crossref{https://doi.org/10.1007/s10958-006-0086-x}
Linking options:
  • https://www.mathnet.ru/eng/znsl759
  • https://www.mathnet.ru/eng/znsl/v314/p247
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:265
    Full-text PDF :76
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024