|
Zapiski Nauchnykh Seminarov POMI, 2004, Volume 314, Pages 247–256
(Mi znsl759)
|
|
|
|
This article is cited in 24 scientific papers (total in 24 papers)
Identities involving the coefficients of automorphic $L$-functions
O. M. Fomenko St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Let $f(z)$ be a holomorphic Hecke eigenform of weight $k$ with respect to $SL(2,\mathbb Z)$ and let
$$
L(s,\operatorname{sym}^2f)=\sum\limits^{\infty}_{n=1}c_n n^{-s},\quad
\operatorname{Re}s>1,
$$
denote the symmetric square $L$-function of $f$. A Voronoi type formula for
$$
C(x)=\sum\limits_{n\leqslant x}c_n.
$$
and the relation
$$
C(x)=\Omega_{\pm}(x^{1/3}).
$$
are proved. Heuristic approaches to estimation of exponential sums arising in this connection are considered.
Received: 06.09.2004
Citation:
O. M. Fomenko, “Identities involving the coefficients of automorphic $L$-functions”, Analytical theory of numbers and theory of functions. Part 20, Zap. Nauchn. Sem. POMI, 314, POMI, St. Petersburg, 2004, 247–256; J. Math. Sci. (N. Y.), 133:6 (2006), 1749–1755
Linking options:
https://www.mathnet.ru/eng/znsl759 https://www.mathnet.ru/eng/znsl/v314/p247
|
Statistics & downloads: |
Abstract page: | 272 | Full-text PDF : | 78 | References: | 54 |
|